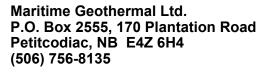


Application, Installation, & Service Manual


Commercial Water to Water Heat Pumps / Chillers

Single Refrigeration Circuit

W-series (standard temperature, R454b) WH-series (high temperature, R513a)

Model Size 100 (9 ton, coaxial coils)
Model Sizes 120/140/180/235 (10 to 20 ton, brazed plates, opt. dedicated DHW)

002747MAN-01

A2L refrigerant: mildly flammable.

Installation and service work should only be performed by properly certified technicians with A2L-specific training. See also Service Procedures chapter.

A2L-SPECIFIC WARNINGS / INSTRUCTIONS (Applicable to W-series only, which uses R454b refrigerant)

Refrigerant does NOT have an odour so is only detectable with suitable field instruments.

Do NOT pierce or burn. Do NOT use flame to defrost or clean. Check for presence of refrigerant using a detector before initiating any service work, especially work involving torches.

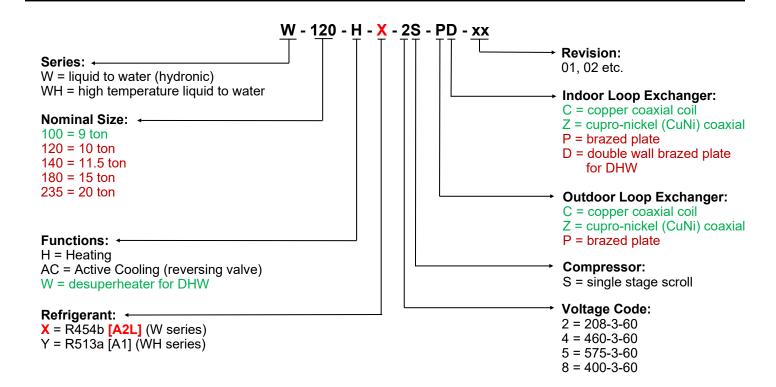
Unit equipped with electrically powered A2L leak detection system, so must be electrically powered at all times (other than during temporary outages or installation / service).

Installation of a unit with A2L refrigerant may require calculations involving the size of the mechanical room and/or rooms served by the unit. These calculations may affect installation procedures used and ventilation provided, and should be fully understood and considered to ensure code compliance.

GENERAL SAFETY PRECAUTIONS

To avoid electric shock, which can cause serious injury or death, ensure all access panels are in place and properly secured before applying power to the unit. Before performing service or maintenance on the heat pump system, ensure all power sources are DISCONNECTED.

Safety glasses and work gloves should be worn at all times whenever a heat pump is serviced. A fire extinguisher and proper ventilation should be present whenever brazing is performed.



Venting refrigerant to atmosphere is illegal. A proper refrigerant recovery system must be employed whenever repairs require removal of refrigerant from the heat pump.

This appliance is not intended for intervention by persons with reduced physical, sensory, or mental capabilities or lack of experience and knowledge, unless suitably supervised. Children should be prevented from playing with appliance.

Model Nomenclature

APPLICA	APPLICATION/AVAILABILITY TABLE Coaxial Coil models - desuperheater available									
MODEL	FUNCTION	REFRIGERANT	VOLTAGE	COMPR.	OUTDOOR COIL	INDOOR COIL	REVISIONS			
W-100	H HAC HACW HW	X	2 4 5	S	C Z	C Z	01			
WH-100	H HAC HACW HW	Y	2 4 5	S	C Z	C Z	01			

APPLICATION/AVAILABILITY TABLE Brazed Plate models - no desuperheater, direct DHW heating available if non-reversing								
MODEL	FUNCTION	REFRIGERANT	VOLTAGE	COMPR.	OUTDOOR COIL	INDOOR COIL	REVISIONS	
W-120	Н	x	2 4 5	S	Р	P D	01	
W-140 W-180	HAC	x	2 4 5	S	Р	Р	01	
W-235	Н	X	4 5	S	Р	P D	01	
VV-235	HAC	X	4 5	S	Р	Р	01	
WH-120 WH-140	Н	Y	2 4 5	S	Р	P D	01	
WH-140 WH-180	HAC	Y	2 4 5	S	Р	Р	01	
M#1 005	Н	Y	4 5	S	Р	P D	01	
WH-235	HAC	Y	4 5	S	Р	Р	01	

Maritime Geothermal Ltd. has a continuous improvement policy and reserves the right to modify specification data at any time without prior notice .

Table of Contents

Tables & Documents	5
System Description	6
W-Series vs. WH-Series	6
Two Different Heat Pump Layouts	6
1. Model Size 100: Coaxial Coils	6
2. Model Sizes 120/140/180/235: Brazed Plates, DHW	6
Space Heating Mode	7
Space Cooling Mode	7
DHW Heating (DHW Water Temperature)	7
Installation Desire	
Installation Basics	8
A2L's	8
Unpacking the unit	8
Unit Placement General Bill of Materials	8
General bill of Materials	9
Wiring	10
Power Supply Connections	10
Indoor Loop Circulator Pump Wiring	10
Outdoor Loop Circulator Pump Wiring	10
Outdoor Loop Water Valve Wiring	10
Indoor Loop Water Valve Wiring	11
Control Transformer	11
Refrigerant Vent Fan Connections	11
BACnet Control Connections	11
Setpoint Control Connections	11
Setpoint Control: Aux. Connections	12
Signals/Hardwired Control Connections	12
Disable Switch (field installed)	12
Other Connections	12
002188CDG - Typ. GEN2 Indoor Circ. Connections	13
002067CDG - Typ. Heating Only Zone Wiring (Setpoint) 002069CDG - Typ. Heating Only Zone Wiring (Signals)	14 15
0020090DG - Typ. Fleating Offity Zoffe Willing (Signals)	10
Piping & Loop Information	16
Loop/Direct DHW Connections	16
Direct Heating of DHW	16
Headers for Multiple Units	16
Ground Loop Systems	17
Open Loop Systems	17
Well Water Quality	17 17
Modulating Water Valve Desuperheater Connections (100 Only)	18
002366PDG - Recommended Buffer Tank Piping	19
002367PDG - Auxiliary Boiler Piping	20
002528PDG - Buffer Tank Piping - Multiple Units	21
002545PDG - DHW Tank Piping for Direct DHW Heating	22
002252PDG - Two Tank Piping with a Rev. Heat Pump	23
002288PDG - Two Tank Simultaneous Heating/Cooling	24
001680PDG - Two Tank Sim. Heating/Cooling (Diverting)	25
000530PDG - Typical Zone Types	26
000970PDG - Desup. Connection to DHW Pre-Heat Tank	27
002384PDG - Desup. Connection - Multiple Units	28
Operation	29
1. BACnet Control	29
Signals / Hardwired Control	29
3. Setpoint Control	29
Setpoint Control Method 1 - Indoor Loop (ICR), One Tank	29
Setpoints	30
Summer Setback	30
Outdoor Reset	31
Setpoint Control Method 2 - Indoor Loop (ICR), 2 Tanks	32
Setpoint Control Method 3 - External HTS/CTS, One Tank	33
a) Heat Pump Mode	33
b) Chiller Mode	34
Setpoint Control Method 4 - External HTS/CTS, 2 Tanks	35

PC Application (PC APP) PC Application Menus	36
LCD Interface & Menus	48
BACnet Interface	50
Startup Procedure	54
Pre-start Inspection	<u>54</u>
Unit Startup Startup Record	<u>55</u> 56
Routine Maintenance	57
Troubleshooting Guide	<u>58</u>
Service Procedures	68
Servicing a Unit with an A2L Refrigerant	68
Pumpdown Procedure	70
General Repair Procedure	70
Vacuuming & Charging Procedure Compressor Replacement Procedure	70 71
Control Board Replacement Procedure	72
LCD Interface (Display) Board Replacement Procedure	73
Decommissioning	74
Model Specific Information	75
Recommended Flow Rates	75
Heat Pump Holdup Volumes	<u>75</u>
Refrigerant Charge Shipping Information	75 75
Operating Temperature Limits	76
Loop Pressure Drop Data (US Units)	77
Loop Pressure Drop Data (Metric Units)	78
Standard Capacity Ratings - W-Series	79
Performance Tables: W-100	80
Performance Tables: W-120	82
Performance Tables: W-140 Performance Tables: W-180	84 86
Performance Tables: W-100 Performance Tables: W-235	88
Performance Tables: WH-100 Performance Tables: WH-120	90 91
Performance Tables: WH-140	92
Performance Tables: WH-180	93
Performance Tables: WH-235	94
Electrical Specifications	95
Electrical Diagrams (All Voltages)	96
Refrigeration Circuit Diagrams	99
Dimensions	104
Appendix A: Control Board Description	106
Appendix B: USB Driver Installation	110
Appendix C: PC App Installation (Win11)	111
Appendix D: PC App Installation (Win10)	112
Appendix E: Updating Firmware	113
Warranty	111

Tables & Documents

Tables

Table 1 - Power Supply Connections	10
Table 2 - Indoor & Outdoor Circulator Connections	10
Table 3 - Water Valve Connections	11
Table 4 - BACnet Connections	11
Table 5 - Setpoint Control Connections	11
Table 6 - Setpoint Control: Aux. Connections	12
Table 7 - Signals Control Connections	12
Table 8a - Typical W-Series Aquastat Settings	12
Table 8b - Typical WH-Series Aquastat Settings	12
Table 9 - Connection Sizes	16
Table 10 - Buffer or DHW Tank Size	16
Table 11 - Header Size for W/WH-100	16
Table 12 - Header Size for W/WH-120/140/180/235	16
Table 13 - Water Quality Limits	17
Table 14a - Typical W-Series Setpoints	30
Table 14b - Typical WH-Series Setpoints	30
Table 15 - Typical Setpoints: HTS/CTS Method, Chiller Mode	34
Table 16 - BACnet Objects - Control Signals (Read/Write)	50
Table 17 - BACnet Objects - Operation Mode Description (Read Only)	50
Table 18 - BACnet Objects - Limits Description (Read Only)	50
Table 19 - BACnet Objects - Data (Read Only)	51
Table 20 - BACnet Objects - Alarm Descriptions (Read Only)	52
Table 21 - BACnet Objects - Fault Descriptions (Read Only)	53
Table 22 - Recommended Flow Rates	75
Table 23 - Heat Pump Holdup Volumes	75
Table 24 - Refrigerant Charge	75
Table 25 - Shipping Information	75
Table 26a - W-Series Operating Temperature Limits	76
Table 26b - WH-Series Operating Temperature Limits	76
Table 27 - Pressure Drop Data (US Units)	77
<u>Table 28 - Pressure Drop Data (Metric Units)</u>	78
<u>Table 29 - W-Series Standard Capacity Ratings</u>	79
Table 30 - W-Series Electrical Specifications	95
Table 31 - WH-Series Electrical Specifications	95
Table A1 - Control Board Connector Descriptions (Top)	107
Table A2 - Control Board Connector Descriptions (Left Side)	107
Table A3 - Control Board Connector Descriptions (Bottom)	108
Table A4 - Control Board Connector Descriptions (Right Side)	109

Documents

002188CDG – Commercial W Typical ICR Connections for GEN2 Setpoint Control	13
002067CDG - Typical Zone and Auxiliary Wiring with GEN2 Setpoint Control (Heating Only)	14
002069CDG - Typical Zone and Auxiliary Wiring with GEN2 Hardwired Option (Heating Only)	15
002366PDG - Recommended Hydronic Buffer Tank Piping	19
002367PDG - Auxiliary Boiler Piping	20
002528PDG - Buffer Tank Piping - Multiple Units	21
002545PDG - Piping for Direct Domestic Water Heating for Heat Pumps with Double Wall Condenser	22
002252PDG - Two Tank System Piping with a Reversing Heat Pump	23
002288PDG - Two Tank Simultaneous Heating / Cooling	24
001680PDG - Two Tank Simultaneous Heating / Cooling (Diverting Arrangement)	25
000530PDG - Typical Zone Types for Hydronic Applications	26
000970PDG - Desuperheater Connection to DHW Pre-Heat Tank	27
002384PDG - Desuperheater Connection to DHW Pre-Heat Tank - Multiple Units	28
002753SCH - W/WH Commercial Single Compressor Schematic Diagram (-H/HAC)	96
001904ELB - W/WH-100-H***-*-*S-** Electrical Box Diagram	97
002400ELB - W/WH-120/140/180/235 Electrical Box Diagram	98
000995RCD - W/WH-100 Refrigeration Circuit Diagram: H/HW Models	99
000992RCD - W/WH-100-HAC/HACW Refrigeration Circuit Diagram: HAC/HACW, Heating Mode	100
000993RCD - W/WH-100-HAC/HACW Refrigeration Circuit Diagram: HAC/HACW, Cooling Mode	101
002403RCD - W/WH-120/140/180/235 Refrigeration Circuit Diagram: H/HW Models	102
002644RCD - W/WH-120/140/180/235 Refrigeration Circuit Diagram: HAC/HACW Models	103

System Description

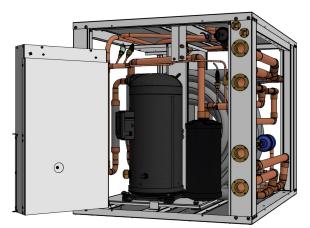
All of the water-to-water heat pumps described in this manual have a single compressor and refrigeration circuit, in size range 9-20 tons. (Dual compressor/dual refrigeration circuit NORDIC heat pumps in the 12-81 ton size range are also offered, detailed in a different manual.)

Single-stage scroll compressors are standard, as are Electronic Expansion Valves (EEV's). The electronic control board has full local unit hydronic temperature control, laptop connectivity via USB with free PC App, LCD interface, electronic readout of all pressures and temperatures, data logging & graphing, and BACnet.

W-Series vs. WH-Series

All of the heat pumps described in this manual come in 2 varieties, which have identical features but differ in their temperature ranges:

The W-series uses R454b refrigerant (an A2L) to achieve a standard geothermal temperature range: the outdoor loop can operate at as low a temperature as 0°F (-17°C) for ice production or geothermal / geoexchange applications, and the indoor loop can reach 130°F (54°C) leaving water temperature (or 140° F (60°C) with a reduced flow rate for DHW applications).


The WH-series uses R513a refrigerant (an A1) to achieve an upward shift in temperature range: the outdoor loop requires a minimum incoming water temperature of 45°F (7°C), so is suitable for use on many open loop or heat recovery applications, or closed ground loops in warm climates. The indoor loop can reach 160°F (71°C) leaving water temperature.

Two Different Heat Pump Layouts

There are also two styles of single compressor heat pumps described here, each with its own advantages and applications:

1. Model Size 100: Coaxial Coils

The indoor and outdoor loop hydronic heat exchangers both consist of pairs of coaxial steel coils with fluted copper inner tube. Coaxial coils have large water channels so that particle fouling is unlikely, so are sometimes preferred for open loop applications. Also, copper nickel (CuNi) inner tube is available on both indoor and outdoor coils for more challenging water qualities.

W/WH-100

These 'light commercial' models are designed in a traditional short cabinet, and can be stacked. They are available with or without a reversing valve, and with or without a desuperheater. The desuperheater option heats DHW in a separate preheat tank using a double wall heat exchanger with ~5% of the heat pump's capacity. It is only active when the heat pump is active due to a demand for space heating or cooling.

2. Model Sizes 120/140/180/235: Brazed Plates, DHW

The indoor and outdoor loop hydronic heat exchangers are brazed plates. These provide a high heat transfer efficiency and smaller refrigerant volume, but have smaller water channels so normally require field installed strainers to prevent particle foul-

A further advantage to brazed plates is that they are available in a single wall variety for space heating, or optional double wall variety for direct heating of domestic hot water (DHW). This is an option that is not available on larger dual circuit NOR-DIC heat pumps, since true dual circuit brazed plates are not made in the double wall configuration. Note that single compressor heat pumps are particularly suitable for DHW heating because of the high temperature lift, leading to naturally longer compressor run times.

Reversing valves are available for space heating models with single wall condenser. If ordered with a double wall condenser for direct DHW heating, reversing valve is not available. Desuperheaters are not applicable to these models.

These models are designed in a vertical cabinet with no side clearance required, making side-by-side multiple unit installations easy.

Space Heating Mode

In space heating mode with a single wall condenser heat pump, the heat pump heats water in an indoor loop or buffer tank, while extracting heat from an outdoor loop.

For commercial environments, heat pumps are often sized and the system laid out by a mechanical consulting engineer. For space heating/cooling, it is good practice to design the system with non-reversing heat pumps that always use 'heating mode': heating with the hot indoor loop, and cooling with the chilled outdoor loop. (See simultaneous heating-cooling diagrams in the <code>Piping</code> chapter.) Multiple units are easily installed using reverse return headers, to provide redundancy as well as the ability to meet large loads. However, reversing valves are available if required.

Control is often done using the building control system via BACnet, and includes lead/lag stage rotation to evenly distribute the run hours between compressors. Loop circulation pumps can also be centrally controlled via BACnet.

It is also possible to use the heat pump in standalone operation or in small numbers of units. In this case, the hydronic temperature control functionality built into the heat pump may be used, and circulation pumps and/or water valves (either on/off or modulating) can be powered and controlled by the heat pump. A third control option is through dry contacts by an external thermostat or controller.

Hydronic heating systems are easily zoned, and zones may be in-floor heating, hydronic air handlers, or other hydronic devices suitable for the water temperature. When a zone requires heat, its zone thermostat calls for a zone circulator pump or zone valve to activate, so that hot water from the buffer tank is sent to the zone requiring heat. Note that there is no direct connection between the zone thermostat and the heat pump, the functions of each being separated by the buffer tank.

Space Cooling Mode (-HAC* models only)

Reversing valves to swap the hot and cold loops are available only for non-DHW (indoor coil "P" models, see Application Table on page 3). When reversing valve is activated, the indoor loop or buffer tank is chilled, and heat is rejected to the outdoor loop.

Hydronic cooling is usually done through hydronic air handlers, which have condensate drains to remove water that is removed while dehumidifying the air. In less humid climates, infloor or radiant cooling is sometimes performed; such systems can't remove humidity from the air. In this case, care must be taken to ensure the cooling surface does not fall below the dew point temperature in order to prevent condensation on floor surfaces.

DHW Heating

When heating domestic hot water (DHW) with the optional double wall condenser, the heat pump heats water in a DHW tank, while extracting heat from an outdoor loop. Operation is very similar to space heating mode in other respects.

DHW Water Temperature

- A commonly cited plumbing code DHW temperature requirement is 140°F (60°C).
- ⇒ The minimum temperature to prevent Legionella bacteria growth is 122°F (50°C). So to prevent bacteria growth, a safety factor of a couple of degrees would require a minimum of 124°F (51°C) at the coolest spot in the hot water distribution system.
- ⇒ Above 122°F (50°C) and up to 131°F (55°C), Legionella bacteria survives, but will not multiply.
- ⇒ At 131°F (55°C), it takes 5 to 6 hours for the bacteria to die.
- ⇒ At **140°F (60°C)**, the bacteria dies in about 32 minutes.
- ⇒ At 151°F (66°C), the bacteria dies instantly. The recommended minimum disinfection temperature is a few degrees above 151°F, which is **158°F** (**70°C**) for about 5 minutes.

The above means that:

- a) A W-120 to 235 heat pump with optional double wall condenser can heat DHW up to 140°F (60°C), the plumbing code temperature. Although the introduction of cold water from the mains will mean parts of the system will below 122°F (50°C), in the unlikely event any nascent bacteria forms it will be taken care of at the higher temperature.
 - A ${\bf W}$ series heat pump can handle low source loop temperatures, as would be found in a northern climate geothermal ground loop.
- a) A WH-120 to 235 heat pump with optional double wall condenser can heat DHW up to 160°F (71°C) and provide DHW disinfecting capabilities for environments that are in some way susceptible to Legionella bacteria. This could be for example due to prolonged periods of water storage at low temperatures.

A **WH** series heat pump requires a source loop temperature that is always above 45°F (7°C). So it **can't** be used for typical geothermal ground loops in northern climates, but could be used for open loop installations in many places or in heat recovery applications.

If in doubt about the safety of a domestic hot water system, a specialist in this area of expertise should be consulted.

Installation Basics

A2L-SPECIFIC WARNING / INSTRUCTION

The W-series uses R454b, an A2L refrigerant which is a classification meaning "slightly flammable". (The **WH-series** uses the **A1** refrigerant R513a, so no special measures apply to WH units.)

Safety measures to mitigate A2L refrigerant leaks are outlined in standard UL/CSA 60335-2-40 and also CSA B52:23.

It is highly recommended that a mechanical consulting engineer be involved in any project involving A2L refrigerating units, whether for new installation or replacement of non-A2L units. This is because the mechanical room requirements can be onerous and also difficult to decipher for the layperson. If engineering services are unavailable, use of the A1 WH-series is suggested (after confirming temperature range is appropriate for the application).

The A2L W-series heat pump / chiller can be considered an "enhanced tightness refrigerating system" with refrigerant charge $m_1 < m_c < m_2$ for the purposes of UL/CSA 60335-2-40, clause GG.10.

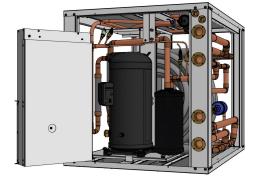
A2L W-series heat pumps are equipped with a refrigerant detector. In case refrigerant is detected inside the enclosure, the heat pump will shut down and display a permanent alarm as well as activate a 24VAC control board output. This output signal can be used to activate external fans or alarms when such action is required by codes.

Unpacking the Unit

When the heat pumps reach the site, they should be unpacked to determine if any damage has occurred during shipment. Any visible damage should be noted on the carrier's freight bill and a claim filed.

Unit Placement

Locate the unit as per the system design drawings.

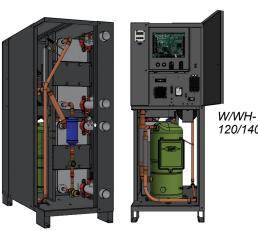

W/WH-100

The access panels on the front and right side of the units should remain clear of obstruction for a distance of >2 ft (0.6 m) to facilitate installation and servicing. Although not required, clearance can be provided to the left side of the units for more convenient compressor service access; but note that the electrical box swings out from the front for compressor access.

Since all serving can be done from the front and sides, no access is required to the back.

It is recommended that the heat pump be placed on a piece of 2" Styrofoam, or the rubber pad available as an accessory from Maritime Geothermal. This will deaden compressor noise emitted from the bottom of the cabinet, and prevent cabinet corrosion. Multiple units can be stacked with such a pad between them up to 2 units high only; the pad must be continuous and not just point or corner supports.

W/WH-100



W/WH-120/140/180/235

These units are taller, and are designed to be installed next to one another with no side clearance.

Note that for multiple unit installations, headers will connect the units on the piping end. Extra space must be allotted for the headers, which can be of substantial size (up to 6" in diameter). Space for external accessories must also be planned for, e.g. strainers and valves (manual, electronic, balancing, or modulating). Headers and accessories are not included with the heat pump, and must be ordered or sourced separately.

Service clearance must be provided on the non-piping end as well, for access to the electrical box and compressor.

120/140/180/235

General Bill of Materials

This is not an exhaustive list, but is an example of the materials that may be required for a commercial installation.

FROM MARITIME GEOTHERMAL

W/WH SERIES HEAT PUMP(S)

OPTIONAL FROM MARITIME GEOTHERMAL

- OUTDOOR TEMPERATURE SENSOR FOR OUTDOOR RESET WHEN USING ONBOARD SETPOINT CONTROL
- HOT/COLD TANK TEMPERATURE SENSORS

LOOPS (AS SPECIFIED BY SYSTEM DESIGNER)

- PREFABRICATED HEADERS
- GROOVED (VICTAULIC) COUPLINGS
- STRAINERS 16 MESH / 1 MM
- ON/OFF WATER VALVES
- BUTTERFLY (HAND) VALVES
- BALANCING VALVES
- CIRC. PUMPS, SIZED FOR REQUIRED FLOW & dP
- PIPE & FITTINGS
- ANTIFREEZE: METHANOL OR PROP. GLYCOL
- BUFFER TANK, W/ELEMENTS _
- SECONDARY WATER TO WATER HEAT EXCHANGERS

ZONES

- ZONE CIRCULATOR(S)
- ZONE TRANSFORMER & CIRC CONTACTOR
- ZONE VALVES (IF NOT INDIVIDUAL PUMPS)
- IN-FLOOR PIPING
- OTHER AIR HANDLERS, DUCTING
- ZONE THERMOSTATS
- RELAYS OR ZONE CONTROLLER
- ZONE SUPPLY & RETURN HEADERS
- PIPE & FITTINGS TO ZONES
- EXPANSION TANK

ELECTRICAL

- HEAT PUMP SERVICE WIRE
- BUFFER TANK ELEMENT SERVICE WIRE
- HEAT PUMP BREAKER
- BUFFER TANK ELEMENT BREAKER
- CONTACTOR & ELEC. BOX (IF NOT WITH TANK)
- THERMOSTAT WIRE 18-4
- THERMOSTAT WIRE 18-2
- FORK TERMINALS FOR TSTAT WIRE (6)

Wiring

Power Supply Connections

The heat pump cabinet has several knockouts of various sizes for the electrical connections.

A schematic diagram (SCH) and electrical box layout diagram (ELB) can be found on the electrical box cover of the unit as well as in the **Model Specific Information** chapter of this manual.

The Electrical Specifications in the Model Specific Information chapter contain information about the size of wire for the connections, as well as the recommended breaker size. These should be checked by referencing MCA and FLA by a qualified professional to ensure conformance to local codes. Power supply connections to the unit are made directly to the compressor contactor inside the electrical box and are as per TABLE 1. Ground is to be connected to the GND lug inside the electrical box.

TABLE	TABLE 1 - Power Supply Connections			
Line	Description	Voltages		
L1	Line 1	All		
L2	Line 2	All		
L3	Line 3	All		
N	Neutral	No Connection		

IMPORTANT NOTE FOR 3-PHASE UNITS: If on startup compressor is noisy and not pumping, reverse L1 and L2 supply wires.

IMPORTANT NOTE: A properly qualified electrician should be retained for all connections to the heat pump and associated controls. The connections to the heat pump MUST CONFORM TO LOCAL CODES.

Indoor Loop Circulator Pump Wiring

The indoor loop circulator provides flow between the heat pump and the buffer tank. In most multiple-unit commercial installations, the circulators (and the heat pump) will be controlled by the building automation system, since one circulator may serve several heat pumps. Connect circulator pumps as per site drawings.

If the heat pump is to control the indoor circulator, there are dry contacts provided to control the circulator pump so that it will be turned on whenever the compressor operates. Wire to **CP1** and **CP2** on the terminal strip, as shown on the following diagram **002188CDG** and the wiring diagram (SCH) in the **Model Specific Information** chapter of this manual. Ensure that the total current draw does not exceed the value indicated on the diagram.

There is also provision for directly connecting an indoor circulator contactor with 24VAC coil, without an external 24VAC transformer. See "Indoor Water Valve Wiring - ON/OFF", below.

When using **Setpoint Control**, the indoor circulator will also be activated at times when the compressor is not running (refer to **Operation** chapter). The heat pump will start and stop indoor circulators to sample the water temperature.

Outdoor Loop Circulator Pump Wiring

The outdoor loop circulator provides flow between the heat pump and the outdoor loop. In most multiple-unit commercial installations, the circulators (and the heat pump) will be controlled by the building automation system, since one circulator may serve several heat pumps. Connect circulator pumps as per site drawings.

If the heat pump is to control the outdoor circulator, there are dry contacts provided to control the circulator pump so that it will be turned on whenever the compressor operates. Wire to **CP1** and **CP2** on the terminal strip at the lower right side of electrical box, as shown on the following diagram **002188CDG** and the wiring diagram (SCH) in the **Model Specific Information** chapter of this manual. Ensure that the total current draw does not exceed the value indicated on the diagram.

There is also provision for directly connecting an outdoor circulator contactor with 24VAC coil, without external 24VAC transformer. See "Outdoor Water Valve Wiring - ON/OFF", below.

IMPORTANT: If the outdoor circulator is connected via **CP1** and **CP2**, it may be unnecessarily activated at times when the compressor is not running, if using the **Setpoint Control** option (refer to **Operation** chapter). Under Setpoint Control, the heat pump may start and stop indoor circulators connected via CP1 and CP2 to sample the water temperature when the heat pump is not operating. Therefore, if using Setpoint Control, outdoor circulators should be activated as per "Outdoor Water Valve Wiring - ON/OFF", below.

TABLE 2 - Indoor & Outdoor Circulator Connections				
Terminal Description				
CP1	Dry contacts for circulator control			
CP2 Dry contacts for circulator control				
Use a 2-conductor 18ga cable.				

Outdoor Loop Water Valve Wiring

<u>ON/OFF</u>: Connect a 24VAC outdoor loop water valve (or outdoor loop circ pump contactor) between **OV1** and **GND** (terminals **DO_0** and **LC** on control board), as shown on the wiring diagram (SCH) in the <u>Model Specific Information</u> chapter. Ensure that the total current draw does not exceed the value indicated on the diagram.

The outdoor circulator contactor may be connected here, to avoid need for an external 24VAC transformer or to avoid activation during sampling when using Setpoint Control.

MODULATING: Connect a 0-10VDC or PWM water valve between OV2 and GND (terminals PWM3 and GND on control board), as shown on the wiring diagram (SCH) in the Model Specific Information chapter. An outdoor modulating water valve will give the control board the means to restrict the outdoor loop water flow in cooling mode on reversing units, in case a low outdoor loop temperature causes a dip in the head pressure and therefore suction pressure. This will prevent nuisance low pressure control trips, for example when using cold open loop well water in cooling mode. It will be closed when unit is off, and may act to limit suction pressure due to high outdoor loop temperature in heating mode depending on firmware revision.

The head pressure below which the modulating water valve will start restricting water flow can be adjusted via the Configuration page in the PC App. Default is 350 psi.

Indoor Loop Water Valve Wiring

ON/OFF: Connect a 24VAC indoor loop water valve between IV1 and GND (terminals DO_1 and LC on control board), as shown on the wiring diagram (SCH) in the Model Specific Information chapter. Ensure that the total current draw of all water valves does not exceed the value indicated on the diagram.

The indoor circulator contactor may be connected in the same way, to avoid the need for external 24VAC transformer.

MODULATING: Connect a 0-10VDC or PWM water valve between IV2 and GND (terminals PWM4 and GND on control board), as shown on the wiring diagram (SCH) in the Model Specific Information chapter. An indoor modulating water valve will give the control board the means to restrict the indoor loop water flow in heating mode, in case a low indoor loop temperature causes a dip in the head pressure and therefore suction pressure. This will prevent nuisance low pressure control trips, for example in case a large zone containing cool water opens, or in case of generally low indoor loop temperature. It will be closed when unit is off (and not sampling for Setpoint Control). On reversing HAC units in cooling mode, valve may act to limit suction pressure due to high indoor loop temperature depending on firmware revision.

The head pressure below which the modulating water valve will start restricting water flow can be adjusted via the Configu-

TABLE 3 - Water Valve Connections				
Control Board Label	Signal Name	Description		
PWM4	IV2	0-10VDC control signal for indoor modu- lating water valve		
PWM3	OV2	0-10VDC control signal for outdoor mod- ulating water valve		
GND	-	Common/ground for IV2, OV2		
DO_1	IV1	24VAC output to actuate indoor water valve or circulation pump contactor coil		
DO_0	OV1	24VAC output to actuate outdoor water valve or circulation pump contactor coil		
LC	-	Common/ground for IV1, OV1		
Use 18ga	Use 18ga cable.			

Control Transformer

The low voltage controls for 208-3-60 models are powered by a class II transformer with resettable breaker on the secondary side for circuit protection. Should the breaker trip, locate and correct the problem and then reset the breaker by pressing in on it

All other voltage models have a transformer with primary and secondary fuses for circuit protection.

Refrigerant Vent Fan Connections

A 24VAC board output (labelled SOL#2) is available for activating a ventilation fan or alarm in case refrigerant is detected inside the enclosure.

See wiring diagram in the Model Specific Information chapter.

BACnet Control Connections

In most multiple-unit commercial installations, the heat pump will be controlled by the building automation system. If using BACnet for external control of heating/cooling demand and/or monitoring of status, use a shielded twisted pair to the connector at the bottom left of control board. There is an optional termination jumper located above the connector.

See the **BACnet Interface** chapter for wiring tips and object names.

TABLE 4	TABLE 4 - BACnet Connections				
Line	Line Description				
Α	Communication +				
В	Communication -				
GND Ground					
Use a shielded twisted pair cable.					

Setpoint Control Connections

If not using a building automation system for control, the heat pump's built in aquastat functionality (with optional outdoor reset) known as "Setpoint Control" may be used. Refer to the Operation chapter of this manual for more information. If this control method is used, it eliminates the need for an external aquastat, and the ICR option also eliminates temperature probe in the tank(s). It provides a two stage system along with delay timer for the hydronic auxiliary heat.

No external control signals are required for non-reversing H models. For reversing HAC models, a dry contact between RA and the O signal is most often required to switch to cooling mode (see Operation chapter). Drawing 002067CDG shows a typical wiring setup for zones, zone circulator and hydronic auxiliary.

Note that for reversing models in cooling mode, it is important to choose zone thermostats or other control devices that continuously return an "O" signal, even when there is no cooling demand. This is to avoid repeated heating and cooling of the buffer tank on demand cycling, causing temperature lags and high electricity consumption.

Setpoint Control does not currently incorporate any lead/ lag or other coordination between multiple units; that is, each heat pump operates independently. A small number of units connected to the same buffer tank may operate under Setpoint Control by using different setpoint temperatures for each stage of each heat pump.

TABLE 5 - Se	TABLE 5 - Setpoint Control Connections			
Signal	Description			
C or CA	24VAC common (ground)			
R or RA	24VAC hot			
O Reversing valve (HAC models only)				
Use a 3-conductor 18ga cable.				

An external temperature probe may be used with the onboard Setpoint Control routine, or two probes (one for hot tank and one for cold tank) may be used. This is HTS/CTS Setpoint Control; see Piping and Operation chapters for details.

Setpoint Control: Aux. Connections

When using Setpoint Control, hydronic auxiliary heat is activated with a 24VAC signal from DO_2 (HYD_AUX) on the left side of control board.

This powers the coil of an external contactor to operate hydronic auxiliary heat. **This signal can provide a maximum of 500mA at 24VAC.** If using an auxiliary heating device with its own controller and transformer that requires dry contacts to activate, a relay with 24VAC coil must. be added.

TABLE 6 - Setpoint Control: Aux. Connections				
Signal Description				
LC	24VAC common (ground)			
DO_2	Hydronic Auxiliary (hot)			
Use a 2-conductor 18ga cable.				

Signals/Hardwired Control Connections

Most installations will use **BACnet** or the **Setpoint Control** routine to control buffer tank temperature, in which case no aquastat is required. However, an aquastat or aquastats can be used if required, for example if heating two loops with different setpoint temperatures, or using a time-of-day or other third-party programmable controller. This is **Signals** or **Hardwired Control**.

The CA, RA, Y1A, and O connections are located on the right side towards the top of the control board, as shown on the wiring diagram in the Model Specific Information chapter. The external device needs to send the 24VAC signal from RA back to the Y1A terminal to call for compressor 1, and to O to select cooling mode (reversing HAC models only). CA is the common

TABLE 7 - Signals Control Connections							
Signal	Description						
CA	24VAC common (ground)						
RA	24VAC hot						
O*	Cooling mode (reversing valve)*						
Y1A	<u> </u>						
* reversing	* reversing W/WH-100-HAC/HACW models only						

The following tables show typical settings for the aquastats. Stage 1 (the compressor) will activate when the tank temperature falls to the activation point, and remain on until the tank temperature rises to the setpoint.

The settings may be changed as desired; however stage 1 setpoint for heating should not exceed 130°F (54°C) for W-series and 160°F (71°C) for WH-series; stage 1 cooling setpoint should not be set below 37°F (3°C) for W-series and 45°F (7°C) for WH-series. Exceeding these setpoint limits will cause the heat pump operating pressures to approach the safety control settings, possibly causing nuisance shutdowns.

If only floor zones are being heated, it is highly recommended to drop each of the heating setpoints by 15°F (8°C) for increased efficiency.

A buffer tank with electric elements can be used to provide auxiliary heat. When using Hardwired Control, a mechanical tank element thermostat can be set to maximum, allowing the electric elements to be controlled by an external contactor placed in the power supply connections; the contactor can be controlled by stage 2 of the heating aquastat. Or if the tank has an electronic controller, it can be set to run according to its own setpoint, which should be set lower than that of the heat pump. Diagram 002069CDG show a typical wiring setup for zones,

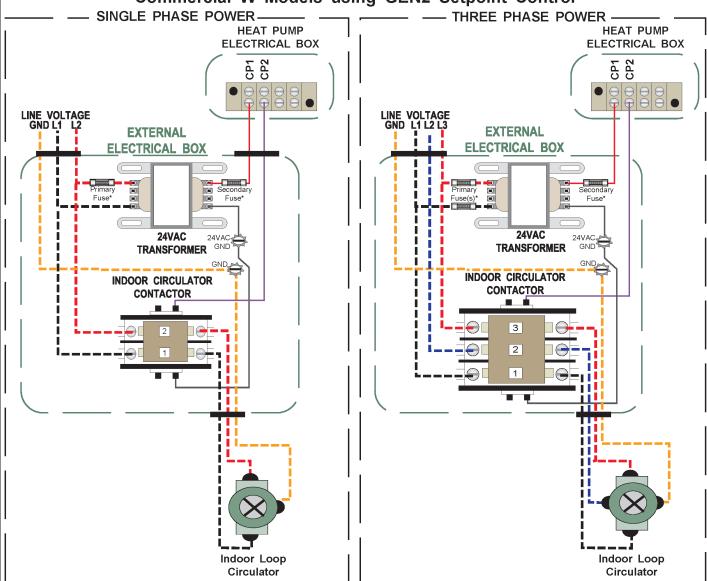
zone circulator, and hydronic auxiliary for a heating only system.

Note that for reversing models in cooling mode, it is important to choose zone thermostats or other control devices that continuously send an "O" signal, even when there is no cooling demand. This is to avoid repeated heating and cooling of the buffer tank on demand cycling, causing temperature lags and high electricity consumption.

TABLE 8a - Typical W-Series Aquastat Settings								
HEATING	Sta	ge 1	Stage 2 (Aux)					
HEATING	°F	°C	°F	°C				
Setpoint	108	42	102	39				
Delta	8	4	8	4				
Activation *	100	38	94	35				
Delay			10 m	inutes				
DHW HEATING	Sta	ge 1	Stage 2 (Aux)					
with double wall condenser option	°F	°C	°F	°C				
Setpoint	140	60	120	50				
Delta	10	5	20	10				
Activation *	130	55	100	40				
Delay			15 m	inutes				
COOLING	Sta	ge 1						
(HAC/HACW only)	°F	°C	*Activati					
Setpoint	45	7	determine the Setr					
Delta	8	4	the Setpoint and Delta values					
Activation *	53	11						

TABLE 8b - Typical WH-Series Aquastat Settings										
HEATING	Sta	ge 1	Stage 2 (Aux)							
HEATING	°F	°C	°F	°C						
Setpoint	150	65	150	65						
Delta	10	5	20	10						
Activation *	140	60	130	55						
Delay			10 minutes							
COOLING	Sta	ge 1								
COOLING	°F	°C	*Activati	01110						
Setpoint	45	7	determined by the Setpoint and Delta values							
Delta	8	4								
Activation *	53	11								

Disable Switch (field installed)


A switch or dry contact to disable demand from the control system may be installed. On control board, jumper **COM_IN** to **GND**, and toggle **12VDC** to **IN_SPARE** to disable. See wiring diagrams in the **Model Specific Information** chapter.

Other Connections

An accessory outdoor temperature sensor is available, to enable Setpoint Control's Outdoor Reset functionality. See Operation and PC App chapters, and wiring diagram in the Model Specific Information chapter for details.

Dry contacts to indicate an alarm are available, as is an "L" 24VAC trouble indicator signal. See wiring diagram in the **Model Specific Information** chapter for details.

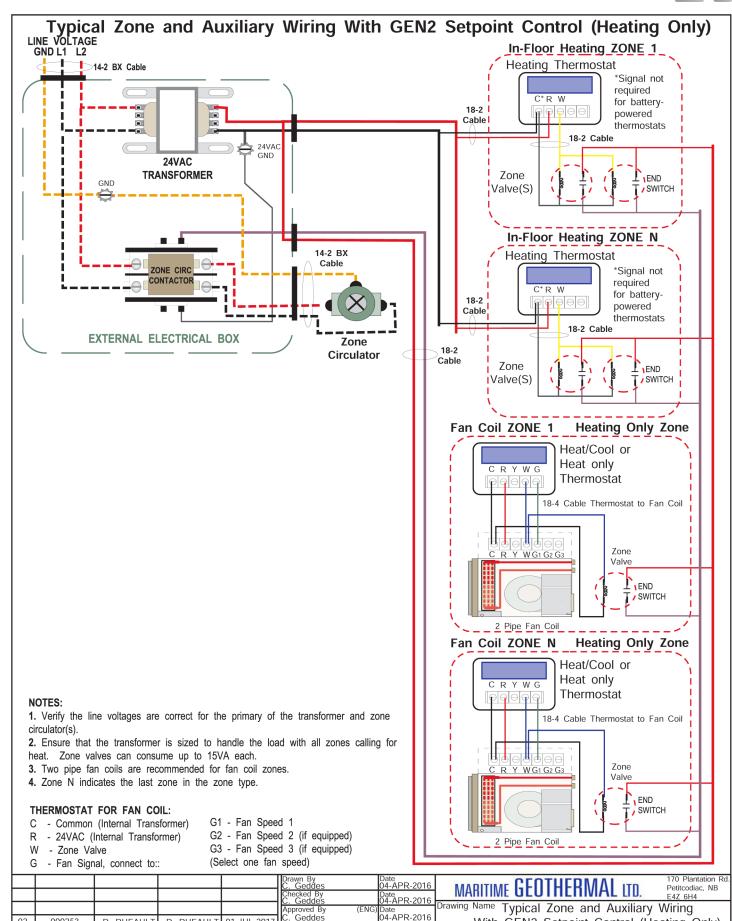
Typical Indoor Circulator Connections for Commercial W Models using GEN2 Setpoint Control

NOTES:

- 1. Verify the line voltages are correct for the primary of the transformer and for the floor circulator.
- 2. Ensure that the transformer is sized to handle the load.
- 3. Priramy fuse(s) required depending on transformer size and primary voltage. Check local codes.
- 4. Secondary fuse required unless transformer has internal fuse or breaker

						Date 04 NOV 2016		ARITIME GEOTHERMAL I	170 F	Plantation Rd. codiac, NB
\vdash					Checked By Chris Geddes Approved By (ENG)	Date 04 NOV 2016 Date	Drawing	Name Commercial W T	L4Z 1	
					Chris Geddes	04 NOV 2016 Date	Connections for GEN2 Setpoint Control			Control
01	Initial Release	Chris Geddes	Chris Geddes	04 NOV 2016	Approved By	Dete	Size	Drawing Number	Drawing Rev	
REV	ECO#	IMPL BY	APVD BY	DATE	Approved By	Date	A	002188CDG	01	1 of 1

Sheet


1 of 1

02

With GEN2 Setpoint Control (Heating Only)

002067CDG

Drawing Number

(MFG)

000253

Initial Release

ECO #

D. RHEAULT

C. GEDDES

IMPL BY

D. RHEAULT 01-JUL-2017

C. GEDDES

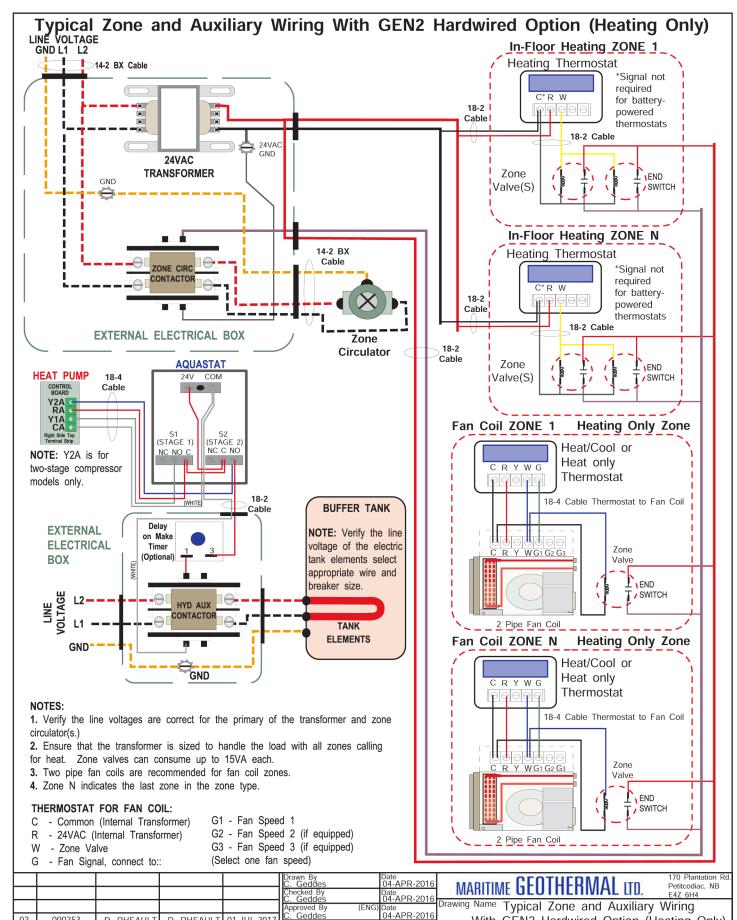
APVD BY

04-APR-2017

DATE

Approved By

02


With GEN2 Hardwired Option (Heating Only)

02

1 of

002069CDG

Drawing Number

(MFG) Date

Geddes

02

01

Initial Release

ECO #

D. RHEAULT

C. GEDDES

IMPL BY

D. RHEAULT

C. GEDDES

APVD BY

01-JUL-2017

04-APR-2017

DATE

Piping & Loop Information

Loop/Direct DHW Connections

The **Outdoor Loop (Supply)** and **Indoor Loop (Hot)** connection types are shown in the table. Piping should be done as per the system piping diagram from the mechanical engineering firm as well as local codes. It is recommended that all piping be insulated to prevent condensation. All piping connected to the unit will have a significant weight when full of water and must be sufficiently externally supported so as not to strain the heat pump connections.

To prevent particle fouling, a strainer should be installed on both loop IN pipes to any heat pump that has brazed plate heat exchangers. Units that have brazed plate heat exchangers are shown in the table. The strainer should be specified to stop particles larger than 1 mm, and corresponds to a mesh size of 16-20 depending on wire diameter. For closed loops, the strainer may be able to be removed after startup and commissioning is complete and a cleaned filter shows no removed particles after 1 week of operation.

Each water line has a temperature sensor inside the heat pump. The output is shown on the LCD Interface on the unit and may also be viewed via the PC APP, and is available through BACnet. An external P/T port should be installed in each line (4 total), for measuring pressure drop for flow rate estimation.

Buffer or DHW tank sizing should be as per the engineering specifications for the jobsite. However, the minimum buffer tank size should follow the rule of 8 US gallons per ton of heat pump capacity to avoid problems with short-cycling the heat pump(s). The table shows the minimum buffer tank size for each heat pump along with the recommended size. The recommended size will provide longer runtimes and fewer starts for improved efficiency.

IMPORTANT NOTE: Units are shipped configured for water for both the indoor and the outdoor loop. This prevents the heat exchangers from freezing when a low pressure alarm occurs regardless of the fluid type and mixture in the system loops. During startup the fluid type and mixture for both the indoor and outdoor loop must be configured via the PC APP using the Tools - Configuration menu. (There is no need for antifreeze with WH-series due to source temperature limitation of 45°F / 7°C.)

WARNING: ENSURE FLUID TYPE SETTING ARE ACCURATE. FAILURE TO DO SO COULD CAUSE THE HEAT EXCHANGER TO FREEZE AND RUPTURE, DESTROYING THE HEAT PUMP AND VOIDING THE WARRANTY.

WARNING: REPEATED RESETS OF A LOW PRESSURE LOCKOUT COULD CAUSE THE HEAT EXCHANGER TO FREEZE AND RUPTURE, DESTROYING THE HEAT PUMP AND VOIDING THE WARRANTY.

Direct Heating of DHW

To prevent scaling, direct heating of domestic hot water should be reconsidered if the water is prone to calcium scaling, which could make frequent flushing of the heat pump necessary, or even render the heat pump permanently inoperable. Total hardness should be less than 350 ppm / 350 mg/L, confirmed by a water test.

Note the **lower flow rates used with DHW** (see **Model Specific Information** chapter). Also note that tanks and piping used directly for DHW heating should be properly certified for use with potable water according to local codes.

TABLE 9 - Connection Sizes									
Model Size	Heat Pump Con- nection Size	Heat Exchanger Type							
100	1 1/4" female NPT	Coaxial							
120									
140	2" grooved/	Brazed Plate							
180	Victaulic	(Strainer Required)							
235									

TABLE 10 - Buffer or DHW Tank Size									
Heat Pump Size	Minimum Size gal (L)	Recommended Size gal (L)							
100	70 (265)	100 (380)							
120	80 (300)	120 (450)							
140	100 (380)	120 (450)							
180	130 (500)	180 (680)							
235	160 (600)	200 (750)							

Headers for Multiple Units

Horizontal headers with equally spaced side connections for multiple units may be fabricated by the mechanical contractor.

The header pipe must have at least the capacity of all the heat pump connections combined. See the following table for minimum header sizes.

TABLE 11 - Header Siz	TABLE 11 - Header Size for W/WH-100									
Number of W/WH-100 Units	Heat Pump Connection Size	Min. Nominal Pipe Size for Header								
2		2"								
3	1 1/4"	2 1/2"								
4	female	2 1/2"								
5	NPT	3"								
6		4"								

TABLE 12 - Header Size for W/WH-120/140/180/235									
Number of W/WH-120/140/180/235 Units	Heat Pump Connection Size	Min. Nominal SCH40 Pipe Size for Header							
2		3"							
3		4"							
4		5"							
5	2" grooved/ Victaulic	5"							
6		6"							
7		6"							
8		6"							

Ground Loop Systems

Note that in northern climates, **only the W-series** is suitable for use with a closed ground loop (**WH** is generally not suitable due to its minimum required source temperature of **45°F** / **7°C**).

Commercial ground loop design is beyond the scope of this manual, and is normally performed by mechanical consulting engineering firms. For concept stage planning, it may be considered that approximately one vertical loop of 150 ft depth per nominal ton of heat pump capacity will be required; or there can be a smaller number of deeper wells. Note that a different borehole length per ton may be required if ground conductivity or load balance vary from the average, and that due to the cost of a commercial installation, a test well to measure ground conductivity is often drilled before ground loop design is finalized. Loops must be placed far enough apart to avoid excessive thermal interference, e.g. 20 ft / 6 m apart. Loops are normally headered together underground, with care taken to size the headers properly so that purging of air is possible with reasonably sized pumping equipment.

Note that adequate freeze protection for the loop fluid is required. The proper type and quantity of antifreeze must be added to the ground loop as per the system design.

WARNING: It is recommended that enough antifreeze be added to allow for a temperature 20°F (11°C) lower than the expected lowest loop fluid temperature entering the heat pump.

It is important to size ground loop circulation pumps to deliver the required flow as listed in the table in the Model Specific Information chapter, considering the expected pressure drop of the antifreeze mixture used through the heat pumps and ground loop and all accessories. Low flow rate due to undersized circulation pumps causing low heat pump performance or safety control trips is a common problem when commercial projects are commissioned.

Once the antifreeze solution has been added to the ground loop and all air has been purged from the system, the entire ground loop can be pressurized to the appropriate value as per the system design requirements. If possible, the ground loop circulators should be tested prior to starting the heat pump to ensure that the loop is functioning properly.

Open Loop Systems

The temperature of the well water for open loop installations should be a minimum of 42°F (6°C) for the W-series and 45°F (7°C) for the WH-series. Refer to the Model Specific Information chapter for a complete table of temperature operation limits.

Discharge water from the heat pump should be disposed of as per the system piping diagram and local codes. Most commonly, a return well will be required.

Open loop systems will require an ON/OFF or modulating water valve to shut off the water flow when heat pump is not running.

Well Water Quality

The well water should be tested to be sure it meets minimum standards. Poor water quality can lead to rapid heat exchanger failure or frequent servicing.

The well should not produce any sand. Sand will physically erode heat exchanger surfaces, and quickly clog return (injection) wells. **Solids** or **TDS** should be less than **1 ppm (1 mg/L)** if a return well is used.

To avoid scale formation on the inside of the heat pump's outdoor loop coil, total **hardness** should be less than **350 ppm** / **350 mg/L**. In practice, scaling is very rarely a problem at northern groundwater temperatures of 50°F or less because scale does not generally form at low well water temperatures (unlike, for example, in a domestic hot water tank). In more southern climates, the hardness guideline will be a more important consideration. Should scale form, heat pump performance will gradually deteriorate, and will require periodic flushing with a calcium/lime removing solution (see **Routine Maintenance**).

Corrosive (salty) water can cause failure of the inner tube of the heat exchanger, leading to loss of refrigerant and water entering the refrigeration circuit, which ruins the heat pump. For models W/WH-100 that have coax coils, if **chlorides** exceed **20 ppm (20 mg/L)** the optional CuNi coil and piping should be ordered. If chlorides exceed **150 ppm (150 mg/L)**, or significant **Ammonia** or **H**₂**S** is present, the use of an open loop system should be reconsidered.

TABLE 13 - Water Quality Limits											
Water Property	MODELS w/ COPPER COAX'S (SIZE 100)	MODELS w/ OPTIONAL CuNi COAX'S (SIZE 100)	MODELS w/ BRAZED PLATES (SIZES 120-235)								
Chlorides	< 20 ppm	< 150 ppm	< 300 ppm								
рН	> 7.5	> 7.5	> 7.5								
Ammonia (NH₃)	< 0.5 ppm	< 0.5 ppm	< 2 ppm								
Hydrogen Sulfide (H₂S)	< 0.05 ppm	< 0.05 ppm	< 0.05 ppm								
Sulfate (SO ₄ ²⁻)	< 70 ppm	< 70 ppm	< 70 ppm								
Solids (TDS)	< 1 ppm	< 1 ppm	< 1 ppm								
Hardness	< 350 ppm	< 350 ppm	< 350 ppm								
Note that mg/L =	Note that mg/L = ppm, and see notes above table.										

Modulating Water Valve

A 0-10VDC modulating motorized water valve controlled by the Gen2 control board in the heat pump may be required on the indoor or outdoor loops depending on transient or steady state loop operating temperatures. See Wiring chapter, and the *Operating Temperature Limits* table in the Model Specific Information chapter.

A modulating water valve may be available as an accessory from Maritime Geothermal Ltd. or may be sourced elsewhere, and can be installed on either the loop's IN or OUT connections at the heat pump.

Note that where installed, the modulating water valve will act as the water shutoff valve, and no additional solenoid valve is required.

CAUTION: if a modulating water valve is not installed where its use is indicated, nuisance low pressure control trips may occur.

O LABLE OF CONTENTS

Desuperheater Connections

(W/WH-100-HW/HACW ONLY)

As opposed to direct DHW heating, the desuperheater is an optional feature on the W/WH-100 only that heats domestic water with \sim 5% of the heat pump's capacity when it is on for space heating or cooling purposes. It doesn't respond to DHW demand

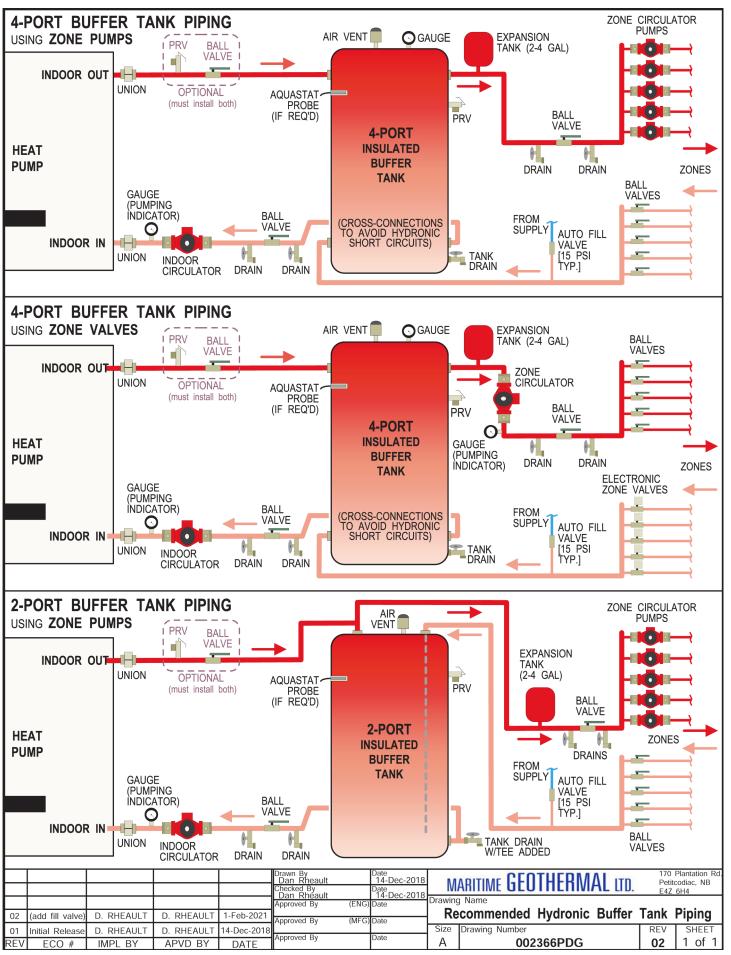
The connections for the DHW circuit (if present) are 1/2" brass FPT fittings. They are marked as DHW IN and DHW OUT.

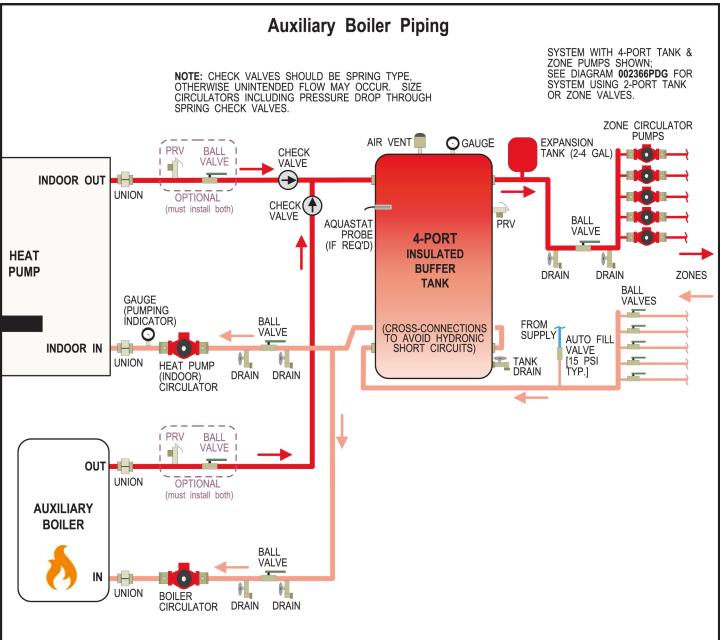
A typical piping diagram for a pre-heat tank configuration can be found in document **000970PDG** at the end of this section. Be sure to note the position of the check valve and the direction of water flow. Other configurations are possible, and there may be multiple units piped together in larger buildings.

WARNING: USE ONLY COPPER LINES TO CONNECT THE DESUPERHEATER. TEMPERATURES CAN BE >200°F NEAR THE UNIT WITH DESUPERHEATER TURNED OFF, POTENTIALLY MELTING & RUPTURING PLASTIC PIPING.

Ensure the tank is filled with water and under pressure before activating the built-in DHW circulator as described below. First, slightly loosen the boiler drain on the DHW Out pipe to allow air to escape from the system. This step will make certain that the domestic hot water circulator in the unit is flooded with water when it is started.

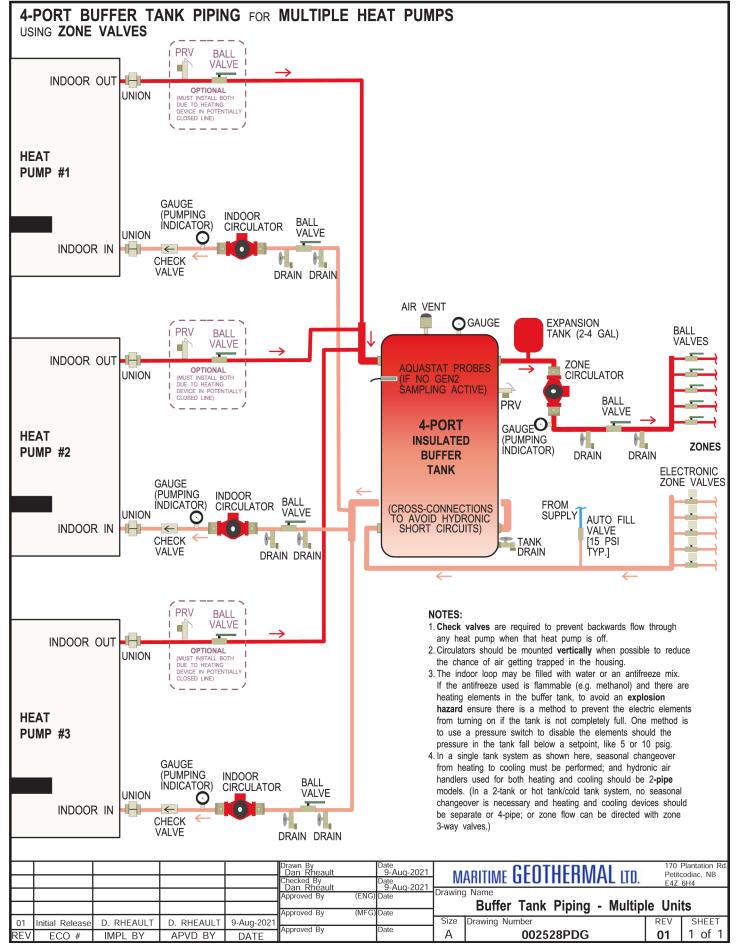
CAUTION: the domestic hot water pump is water lubricated; damage will occur to the pump if it is run dry for even a short period of time.

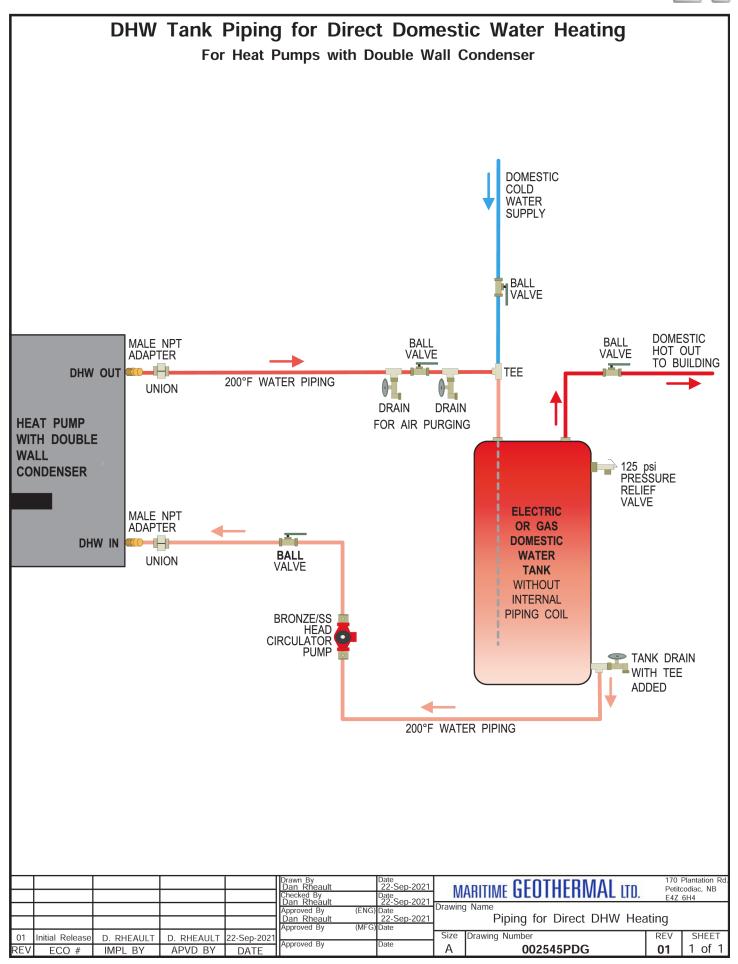

Activate the built-in DHW circulator by connecting the brown wire with the blue insulated terminal to L1 of the compressor contactor. **Ensure the power is off when connecting the wire.** Once connected the DHW switch on the front of the unit may be used to enable/disable the domestic hot water circulator.


The DHW loop may have to be purged of air several times before good circulation is obtained. A temperature difference between the DHW In and DHW Out can be felt by hand when the circulator pump is operating properly.

For the pre-heat tank setup, the final tank should be set to 140°F (60°C), which is required by most codes. The pre-heat tank does not require electric elements. This setup takes full advantage of the desuperheater as it is the sole heat provider to the pre-heat tank. The desuperheater remains active during the compressor runtime until the pre-heat tank has been completely heated by the desuperheater alone. This setup is more energy efficient than a single tank setup, and eliminates the possibility of reverse heating of the refrigerant gas in cooling mode.

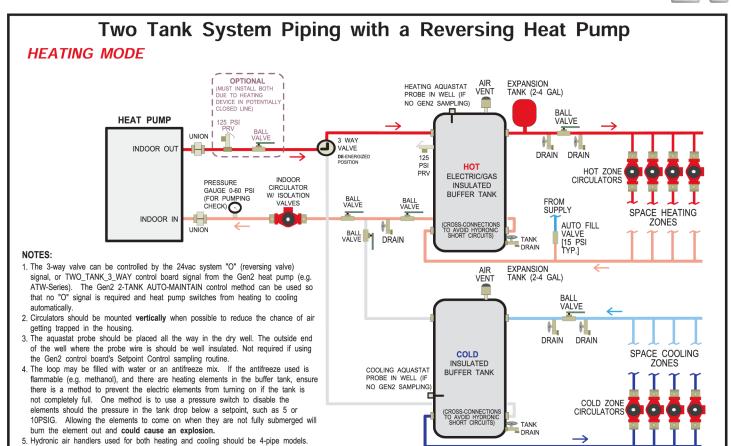
CAUTION: If two (2) shut-off valves are located on the domestic hot water ines as shown in the diagram, a pressure relief valve must be installed to prevent possible damage to the domestic hot water circulator pump should both valves be closed.

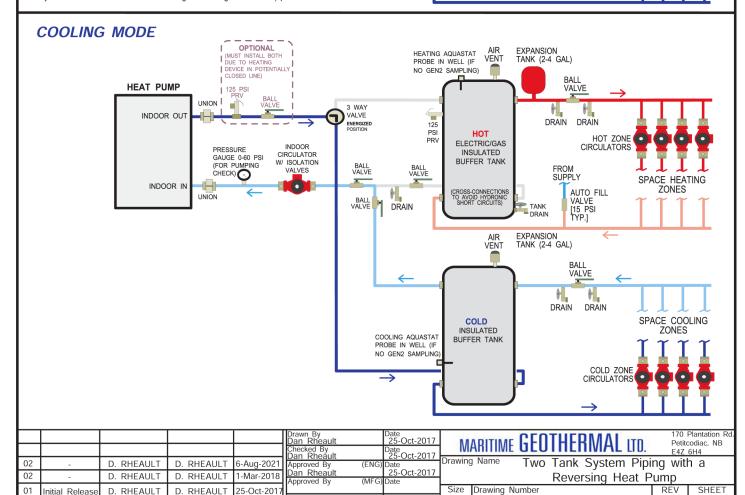




USING THIS PARALLEL ARRANGEMENT, BOILER MAY OPERATE ALONE (TO PROVIDE BACKUP HEAT) OR IN CONJUNCTION WITH HEAT PUMP (TO PROVIDE AUXILIARY

BOILER MUST BE CONTROLLED AS 3RD STAGE OF HEAT BY HEAT PUMP CONTROL BOARD OR EXTERNAL CONTROLLER. BOILER MAY THEN OPERATE AT A HIGHER OUTPUT TEMPERATURE THAN HEAT PUMP WITHOUT CAUSING HIGH TEMPERATURE/HIGH PRESSURE PROBLEMS AT THE HEAT PUMP.


F					Drawn By Dan Rheault Checked By		Date 14-Dec-2018 Date 14-Dec-2018						
02	(add fill valve)	D. RHEAULT	D. RHEAULT	1-Feb-2021	, ,	(ENG)	Date	Drawino	Auxiliary Boiler Pipin		5111		
01	Initial Release	D. RHEAULT	D. RHEAULT	14-Dec-2018	,			Size	Drawing Number	REV	SHEET		
REV	ECO #	IMPL BY	APVD BY	DATE	Approved By		Date	Α	002367PDG	02	1 of 1		

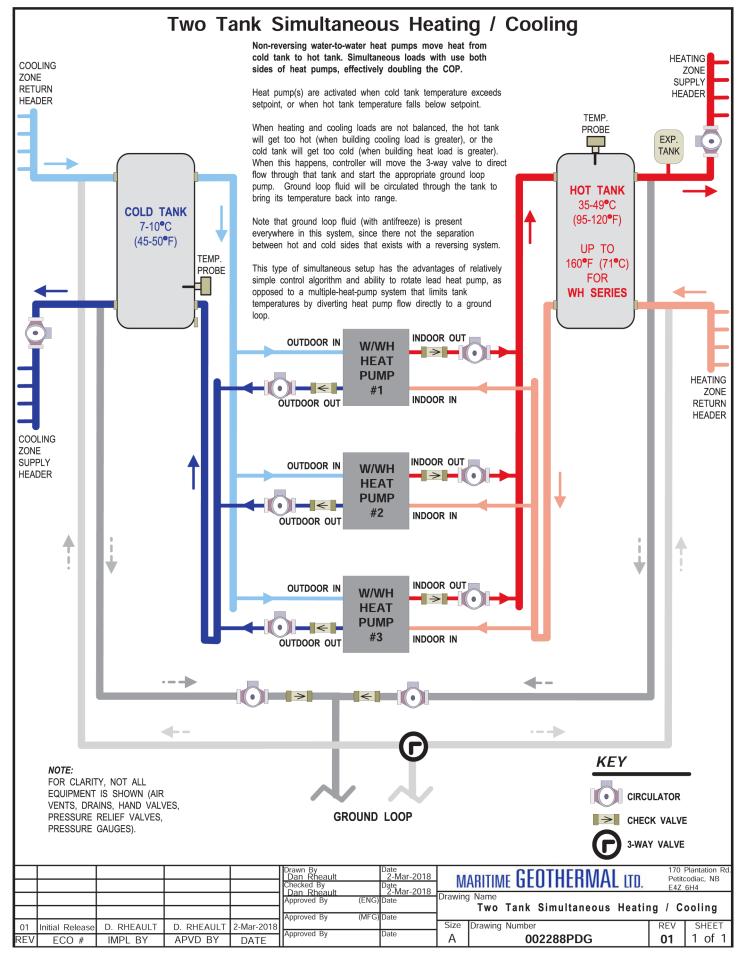


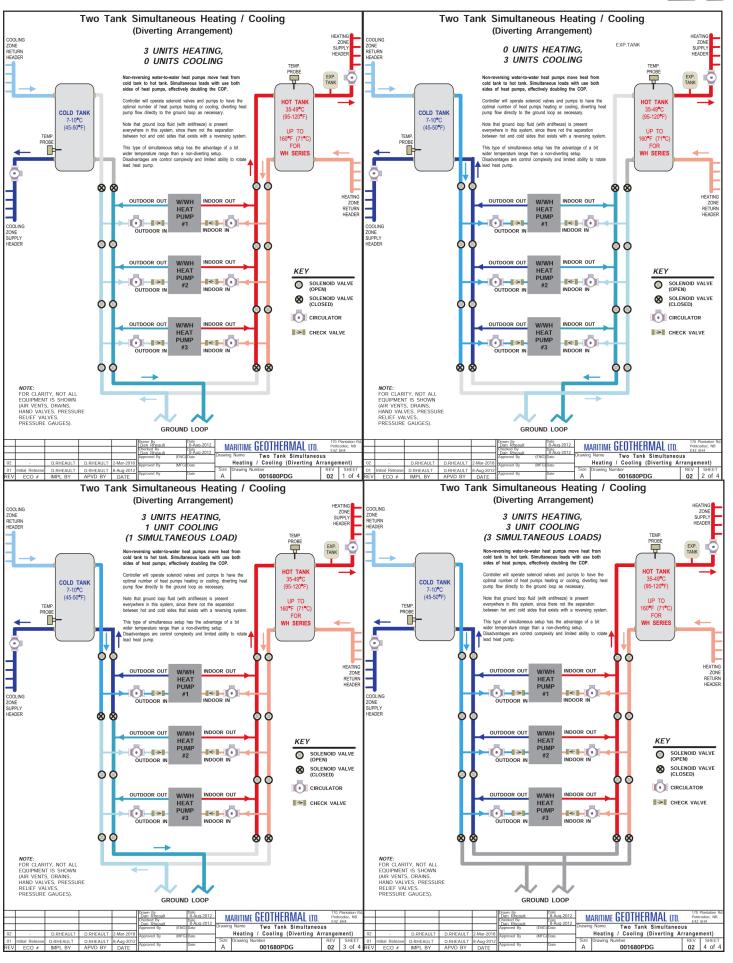
1 of 1

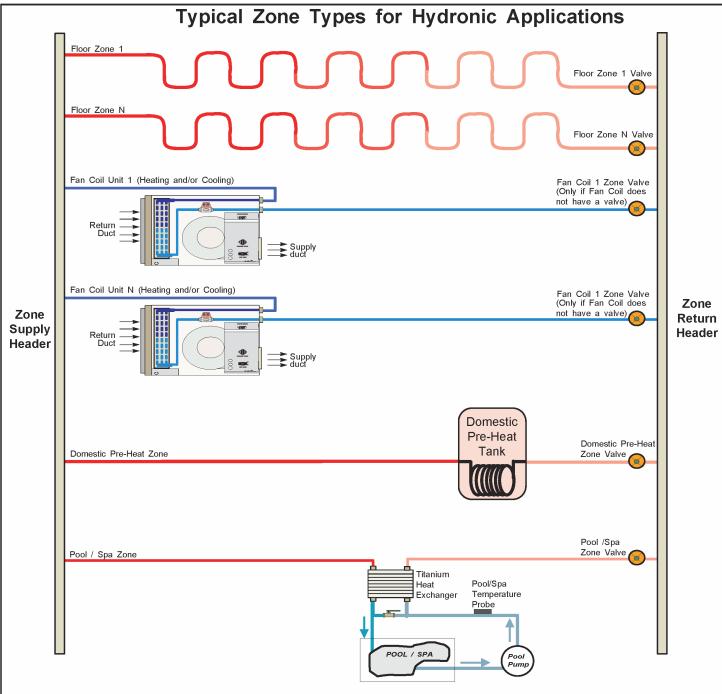
03

Α

002252PDG

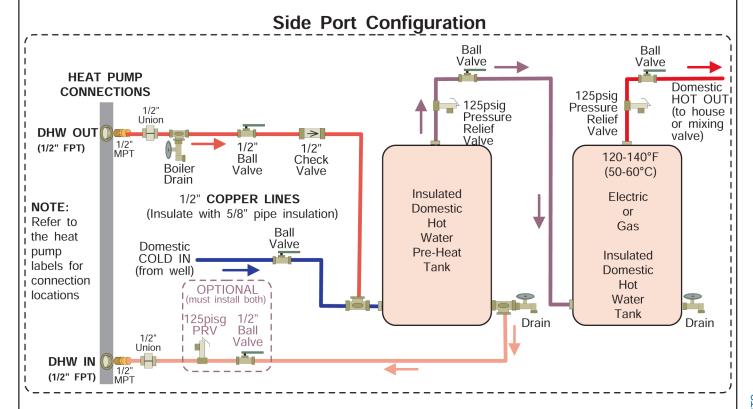

Approved By

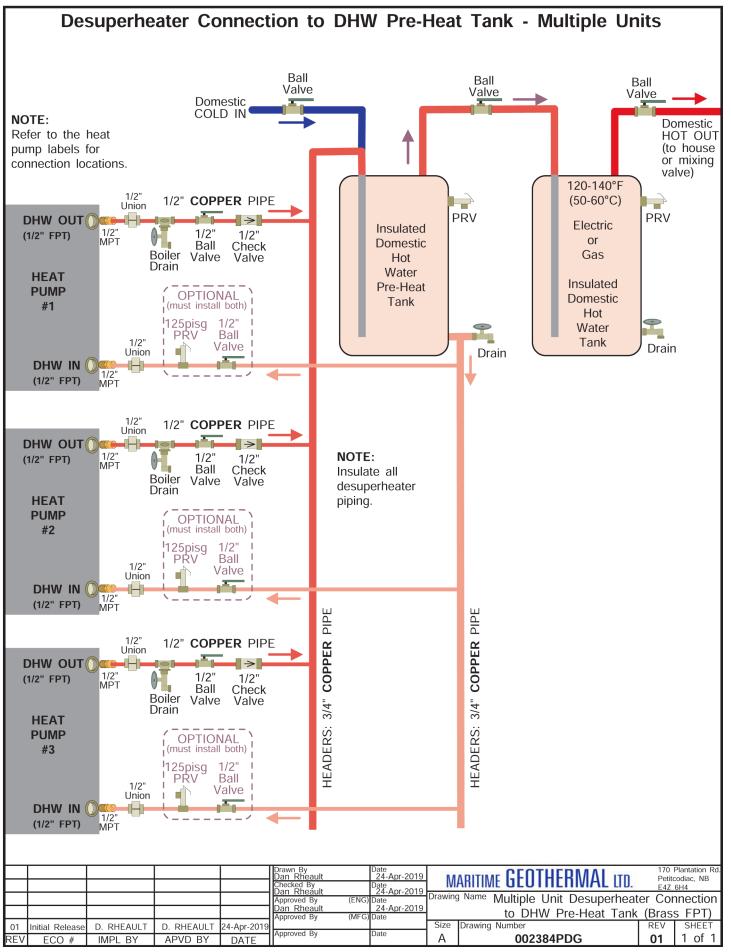

ECO #


IMPL BY

APVD BY

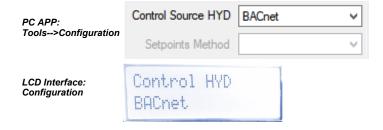
DATE




NOTES:

- 1. Floor zones are heating only. Cooling a floor zone will cause condensation in the floor. Floor zone valves should be wired through a relay that is controlled by the cooling signal (O) that breaks the signal when in cooling mode to ensure that they cannot accidentally be energized.
- There may be multiple floor zones.
- There may be multiple fan coil units, (heating and /or cooling). A zone valve is not required if the unit has a internal valve.
- Domestic Pre-Heat Tank is for on-demand apllications. The tank must have a heat eaxchanger in it or an external one must be used to separate the zone loop from the potable water supply.
- Ensure the floor circulator is adequately sized to accomodate the type and number of zones connected to the system.
- The pool aquastat will operate the Pool/Spa Zone Valve.

					Drawn By Chris Geddes	Date 06 SEP 07	N/I	ARITIME GEOTHERMAL LTD.		Plantation Rd. codiac, NB
					Checked By Chris Geddes	Date 06 SEP 07	IVI	ANTHIVIE ULUTHLINVIAL LID.	E4Z	
						NG) Date		g Name		
					Chris Geddes	06 SEP 07	Ty	pical Zone Types for Hydronic .	Applica	ations
-					Approved By (Mi	-G) Date		1 31 3	• •	
01	Initial Release	C. GEDDES	C. GEDDES	06 SEP 07			Size	Drawing Number	REV	SHEET
REV	ECO#	IMPL BY	APVD BY	DATE	Approved By	Date	Α	000530PDG	01	1 of 1


					Drawn By Chris Geddes Checked By	Date 10 MAR 09 Date	M	ARITIME GEOTHERMAL LTD.		Plantation Rd. codiac, NB
01a	Re-titled	D. RHEAULT	D. RHEAULT	15 JAN 19	Chris Geddes	10 MAR 09	١ ١	^{g Name} Single Unit Connection to DHW Pre-Heat Tank (Bras		
_	Initial Release			10 MAR 09	Approved by (IVI	Date Date	Size	Drawing Number	REV	SHEET
REV	ECO #	IMPL BY	APVD BY	DATE	Approved by	Date	l A	000970PDG	01a	1 of 1

Operation

1. BACnet Control

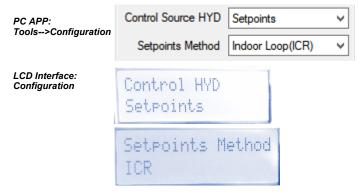
If using **BACnet Control**, the heat pump will turn the compressors on and off and activate cooling mode (for HAC/HACW models) when it is told to by the building control system. This is the most commonly used control method for multiple-unit installations, since it allows lead/lag stage rotation and centralized control of circulation pumps and valves. The heat pump's internal control logic will not be used, except to *limit loop temperatures* and report operating data and alarms. See the **BACnet Interface** chapter later in this manual for network specification and BACnet object names.

2. Signals / Hardwired Control

Similar to BACnet control, with **Signals Control** the heat pump will turn the compressors on and off and activate cooling mode when it is told to by 24VAC signals. These are provided via external dry contacts from aquastat(s) or a non-BACnet controller. See **Wiring** chapter. The heat pump's internal control logic will not be used, except to *limit loop temperatures* and activate alarms outputs.

Most single-unit installations will instead use **Setpoint Control**; however, **Signals Control** provides control flexibility for certain situations, for example if two water loops with different setpoints are being heated. Typical temperature settings are shown in the table in the **Wiring** chapter.

When using Signals Control, the backup tank element thermostat can be set to a safe maximum, allowing the electric elements to be controlled by an external contactor placed in the power supply connections (see diagrams in Wiring chapter). Since the compressor is single stage for these model sizes, this contactor can be controlled by stage 2 of the heating aquastat. Alternatively, tanks with their own programmable controller can be set to run independently with a lower temperature setpoint than the aquastat(s).



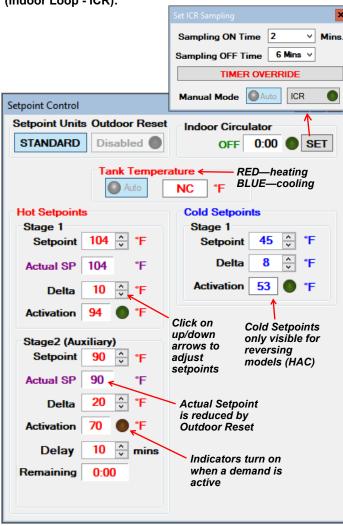
3. Setpoint Control

One of the features of the GEN2 Control Board is built in temperature control functionality called "**Setpoint Control**". It is a good method of controlling hydronic heating and cooling demand for a single heat pump or small number of heat pumps since it eliminates the need for an external aquastat or temperature sensor (although external sensors may be used, as described below).

There are four options for Setpoint Control, outlined as follows.

Setpoint Control Method 1 - Indoor Loop (ICR) One Tank

ICR (Internal Circulator Relay) is the default method and uses the **Indoor OUT** temperature probe inside the unit for temperature control. Its value is displayed in the **Tank Temperature** box on the PC App's **View-->Setpoint Control** window, shown below. If this temperature shows **NC**, then either the probe is not connected to the board or there is a problem with it.


The heat pump will cycle the indoor circulator on and off when the unit is idle to sample the water temperature. When heating mode ends, the indoor circulator will continue to run for 30 seconds. It will then cycle with an OFF time and ON time as set by the **Set ICR Sampling** popup which appears when **SET** is clicked on the **View-->Setpoint Control** window. The timer counts down the time remaining before the next switch between ON/OFF. The indoor circulator indicator will indicate when the circulator is ON, OFF or SAMPLING. The default sampling times are 2 minutes ON and 6 minutes OFF. The LCD display will also indicate when the ICR is sampling (ON). The **Timer Override** button will reduce the countdown timer to 10 seconds. The compressor(s) will only start when sampling is completed.

For reversing HAC/HACW models only, cooling mode is selected by making a dry contact connection between **R/RA** and **O** on the right side of control board. This is the one external control requirement.

To prevent the compressor from starting when the power is first turned on, the system is **DISABLED** from factory. The LCD screen will show "**SYSTEM DISABLED**". To enable the system, use either the **System Enable/Disable** button at the top right corner of the PC App's **Tools-->Configuration** window or use the LCD interface and select **SYSTEM EN/DIS**.

See below, and also the **PC Application (PC App)** chapter for full screenshots of the various windows.

The Setpoint Control window looks like this for Method 1 (Indoor Loop - ICR):

WARNING: When in Manual Override mode, Activation no longer responds to Setpoint Control values (i.e. if a stage is on it will not turn off when the setpoint is reached). Go to the PC App's Control Panel to turn demand ON/OFF with the Stage buttons.

Summer Setback

In locations where hydronic cooling is not required, or with non-reversing models, the heating system may be idle for several months in the summer. In this case, the heat pump may be put in **Summer Setback** mode via the PC App's **Tools--> Configuration** window or the LCD Interface.

Summer Setback disables stage 3 (AUX), drops setpoints to 70°F (21°C), and decreases temperature sampling frequency to 2 days. This minimizes electric power usage while keeping cast iron head circulation pumps operational.

Setpoints

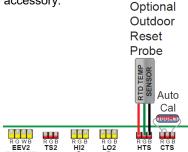
TABLE 14a - Typical W-Series Setpoints						
HEATING	Stage 1		Stage 2 (Auxiliary)			
	°F	°C	°F	°C		
Setpoint	108	42	102	39		
Delta	8	4	8	4		
Activation *	100	38	94	35		
Delay			10 minutes			
DHW HEATING with double wall	Stage 1		Stage 2 (Auxiliary)			
condenser option	°F	°C	°F	°C		
Setpoint	140	60	120	50		
Delta	20**	11**	20	10		
Activation *	130	55	100	40		
Delay	15 minutes		inutes			
COOLING (HAC/HACW only)	Stage 1		*Activation is determined by			
	°F	°C	the Setpoint and			
Setpoint	45	7	Delta values **MINIMUM delta for DHW heating			
Delta	8	4				
Activation *	53	11	at reduced flow			

TABLE 14b - Typical WH-series Setpoints							
HEATING	Stage 1		Stage 2 (Aux)				
HEATING	°F	°C	°F	°C			
Setpoint	150	65	150	65			
Delta	10	5	20	10			
Activation *	140	60	130	55			
Delay			10 minutes				
COOLING	Stage 1						
(HAC/HACW only)	°F	°C	*Activation is determined by the Setpoint and Del-				
Setpoint	45	7					
Delta	8	4	ta values				
Activation *	53	11					

For example, in heating mode: when the water temperature falls by the "Delta" amount below the "Setpoint", the stage is activated (at the board-calculated "Activation" temp). The stage stays on until water is heated to the "Setpoint" temperature.

Heating setpoints will vary widely by application. Lower indoor loop water temperatures may be able to be used, or higher ones may be required. Lower heating setpoints will translate directly into a higher COP (efficiency). Increasing Delta values will also increase efficiency due to longer runtimes, and lead to less compressor wear due to reduced number of starts.

The maximum water temperature setpoint for the R454b space heating **W-series** with single wall condenser is **130°F** / **54°C**, while for the DHW heating **W-series** with the double wall condenser option the maximum is **140°F** / **60°C** with reduced flow rate. The minimum setpoint for cooling (HAC units only) is **37°F** (3°C).

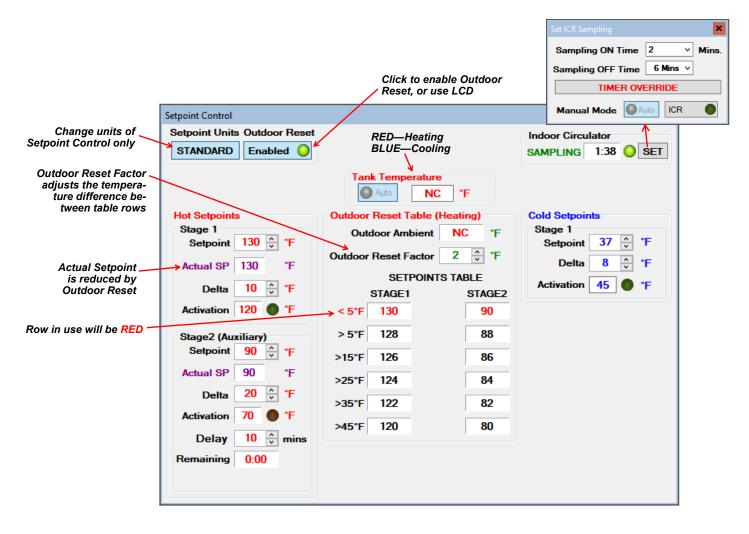

NOTE: for *W-series DHW HEATING with double wall condenser* option, the reduced flow rate and resulting higher temperature difference through heat pump means that the minimum delta T setting is 20°F as noted in table. This is to prevent setpoint from being met immediately after compressor start.

The maximum water temperature setpoint for the R513a WH-series is 160°F / 71°C, while the minimum setpoint for cooling (HAC units only) is 45°F (7°C).

Outdoor Reset

As mentioned earlier, lower heating setpoints will translate directly into a higher COP (efficiency). **Setpoint Control** has an optional Outdoor Reset control algorithm for heating mode, which reduces the heating temperature setpoints at warmer outdoor temperatures as measured by an accessory outdoor temperature sensor.

To enable outdoor reset, first connect the outdoor temperature sensor accessory:



Then enable the outdoor sensor in the **Tools --> Configuration** window or LCD interface:

Next, click on the **Outdoor Reset** button at the top of the **Setpoint Control** window. The button will change to say Enabled, the indicator will come on and the Outdoor Reset Table will appear. The table is created by subtracting the value of the Outdoor Reset Factor from the original setpoints once for each table row . The user-selected Hot Setpoints are located in the top row(<5°F), and the next row down equals the row above minus the Outdoor Reset Factor. The table row in use based on current outdoor temperature is shown in red.

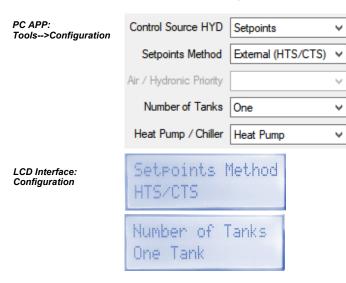
It can be seen that as outdoor temperature rises and heating load falls, the heating mode buffer tank temperature will be decreased and a higher seasonal efficiency will result.

ABLE OF CONTENTS

Setpoint Control Method 2 - Indoor Loop (ICR) Two Tanks

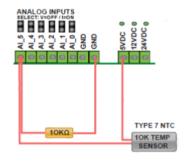
It is possible to use all of the **Setpoint Control Method 1** settings, and operate two buffer tanks: one for heated water and one for chilled water. The heat pump will switch over to cooling tank in response to a dry contact between the **R/RA** and **O** terminals at the right side of control board. The **O** signal (along with **C/GND**) will also energize a 3-way valve to divert flow to the cold tank (see **Piping** chapter).

However, it is suggested to use **Method 4** (External HTS/CTS with two tanks) for this purpose. This will require two external tank temperature sensors, but has the benefit of both tank temperatures being constantly monitored and also has the added **Auto Maintain** option (maintaining both hot and cold tank setpoints without the requirement for an external "O" dry contact).


go to TABLE OF CONTENTS

Setpoint Control Method 3 - External (HTS/CTS) One Tank

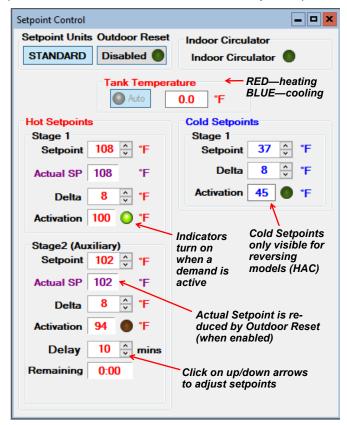
a) HTS/CTS w/ One Tank - Heat Pump Mode


Most of the time, hydronic heating/cooling heat pumps work in response to the temperature of the indoor loop (indoor buffer tank). The previously described control methods (1, 2) work this way, as does this one. This is *Heat Pump Mode*, and is the only control option for reversing models (HAC/HACW).

For non-reversing models (H), it is also possible to control demand based on the temperature of the outdoor or cold loop. This is *Chiller Mode*, described on next page.

When this method is used, no indoor circulator control for temperature sampling will occur. It requires an external temperature sensor placed in a dry well near the top of the buffer tank. Its value is displayed in the **Tank Temperature** box on the PC App's **View-->Setpoint Control** screen. If this temperature shows **NC**, then either the probe is not connected to the board or there is a problem with it.

A 10K Type 7 (or Type 3) NTC thermistor along with a 10K 1% or better resistor must be connected to the control board in order to use the External HTS/CTS method. These are available as accessories. Connect the sensor to the Al_5 input as shown below and on the wiring diagram (SCH) in the Model Specific Information chapter. This sensor will be used for both heating and cooling. Remove the Al_5 jumper on the control board.



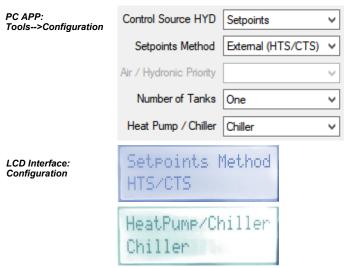
For reversing models only (HAC/HACW), cooling mode is selected by making a dry contact connection between **R/RA** and **O** on the right side of control board. This is the one external control requirement.

To prevent the compressor from starting when the power is first turned on, the system is **DISABLED** from factory. The LCD display will show "**SYSTEM DISABLED**". To enable the system, use either the **System Enable/Disable** button at the top right corner of the PC App's **Tools-->Configuration** window or use the LCD interface and select **SYSTEM ENABLE**.

See below, and also the **PC Application (PC App)** chapter for full screenshots of the various windows.

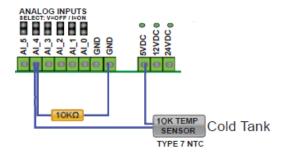
The Setpoint Control window looks like this for Method 3a (External HTS/CTS with One Tank, Heat Pump Mode):

WARNING: When in Manual Override mode, Activation no longer responds to Setpoint Control values (i.e. if a stage is on it will not turn off when the setpoint is reached). Go to the PC App's Control Panel to turn demand ON/OFF with the Stage buttons.


The features explained in **Setpoint Control Method 1** - **Indoor Loop ICR with One Tank** also apply to **Setpoint Control Method 3** - **External HTS/CTS with One Tank**:

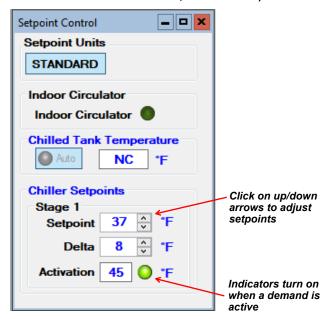
- Typical Temperature Setpoints
- Summer Setback
- Outdoor Reset function

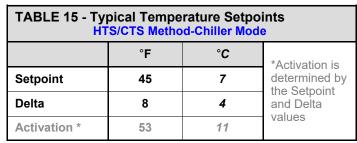
b) HTS/CTS w/ One Tank - Chiller Mode


For *non-reversing models only* (H), **Chiller Mode** allows the heat pump to be controlled from the Outdoor Loop (cold side) rather than the Indoor Loop (hot side) for applications that require controlled cooling with high temp water rejection. The heat pump is still operating in "heating mode"; it is simply being started and stopped based on the cold side temperature.

Just as with Heat Pump Mode, a buffer tank should normally be used. With **Chiller Mode**, it will be on the cold side (outdoor) loop.

When this method is used, no circulator control for temperature sampling will occur. It requires an external temperature sensor placed in a dry well near the *bottom* of the cold buffer tank. Its value is displayed in the *Chilled Tank Temperature* or *Cold Tank* box on the PC App's *View-->Setpoint Control* screen. If this temperature shows *NC*, then either the probe is not connected to the board or there is a problem with it.


A 10K Type 7 (or Type 3) NTC thermistor along with a 10K 1% (or better) resistor must be used. These are available as accessories. Connect the sensor to the Al_4 input as shown below and on the wiring diagram (SCH) in the Model Specific Information chapter. This sensor will be used for both heating and cooling. Remove the Al_4 jumper on the control board.



To prevent the compressor from starting when the power is first turned on, the system is **DISABLED** from factory. The LCD display will show "**SYSTEM DISABLED**". To enable the system, use either the **System Enable/Disable** button at the top right corner of the PC App's **Tools-->Configuration** window or use the LCD interface and select **SYSTEM ENABLE**.

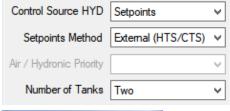
See below, and also the **PC Application (PC App)** chapter for full screenshots of the various windows.

The Setpoint Control window looks like this for Method 3b (External HTS/CTS with One Tank, Chiller Mode):

WARNING: When in Manual Override mode the Activation no longer responds to the Setpoint Control values (i.e. if a stage is on it will not turn off when the setpoint is reached). Go to the Control Panel to turn demand ON/OFF with the Stage buttons when in Manual Override Mode.

Above is outlined the recommended method to use Chiller Mode. However, it is also possible to use the ICR setpoint control method (circulator sampling) for chiller mode:

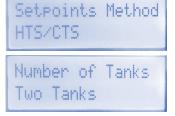
Control Source HYD	Setpoints	v
Setpoints Method	Indoor Loop(ICR)	v
Air / Hydronic Priority		V
Number of Tanks	One	V
Heat Pump / Chiller	Chiller	V


The complication is that sampling will actually be done with the *outdoor* loop circulator, and there is no built in outdoor circulator relay. So two approaches can be taken:

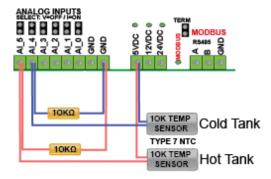
- Connect outdoor circulator to the indoor circulator terminal strip, and vice versa (indoor circulator to outdoor terminal strip) OR
- Install an OCR relay, with coil connected between OV1 (control board DO_0) and C (24vac ground); and outdoor circulator powered from the normally open relay contacts.

Setpoint Control Method 4 - External (HTS/CTS) *REVERSING MODELS

ONLY (HAC/HACW)


Tools-->Configuration

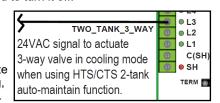
Two Tanks


LCD Interface: Configuration

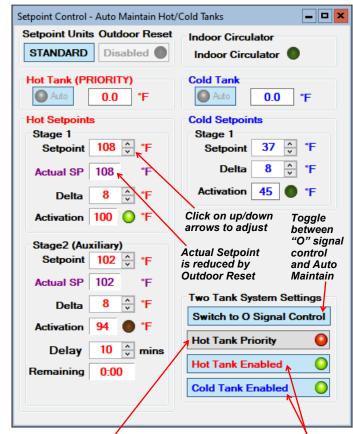
PC APP:

Like with Method 3, when this method is used no indoor circulator control for temperature sampling will occur. It requires an external temperature sensor placed in a dry well in the hot buffer tank as well as one in the cold buffer tank. The values are displayed in the Hot Tank and Cold Tank boxes in the PC App's View-->Setpoint Control window. If either temperature shows NC, then either the probe is not connected to the board or there is a problem with it.

10K Type 7 (or Type 3) NTC thermistors along with 10K 1% or better resistors must be connected to the control board. Connect the Hot Tank sensor to the Al 5 input and the Cold Tank sensor to the Al 4 input as shown below and on the wiring diagram (SCH) in the Model Specific Information chapter. Remove the Al 5 and Al 4 jumpers on the control board.


a) O Signal Control

Cooling mode may selected by making a dry contact connection between **R/RA** and **O** at the right side of control board. This results in one external control requirement. O and C can be used to energize a 3-way valve to divert flow to the cold tank (see Piping chapter).


b) Auto Maintain

Alternatively, the heat pump can automatically switch between heating the hot tank and chilling the cold tank, without the need for any external control signals. Click the "Switch to Auto Maintain" button in following screenshot (PC App only). If using this function, hot tank or cold tank can be set as priority, and either tank can be disabled to turn it off.

For Auto Maintain, the L3 signal from the left side of control board in conjunction with C/GND should be used to energize the 3-way valve in cooling, since there is no O signal.

The Setpoint Control window looks like this for Method 4 (External HTS/CTS with Two Tanks):

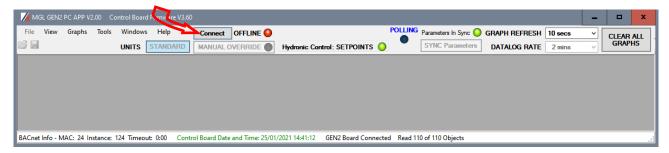
Toggle priority mode: heating or cooling (Auto Maintain only)

Enable or disable either tank (Auto Maintain only)

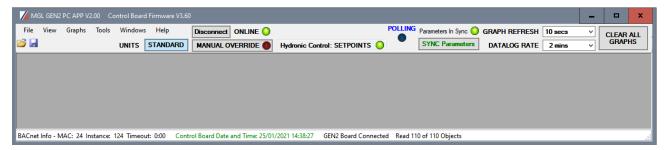
WARNING: When in Manual Override mode, Activation no longer responds to Setpoint Control values (i.e. if a stage is on it will not turn off when the setpoint is reached). Go to the PC App's Control Panel to turn demand ON/OFF with the Stage buttons.

To prevent the compressor from starting when the power is first turned on, the system is **DISABLED** from factory. The LCD display will show "SYSTEM DISABLED". To enable the system, use either the System Enable/Disable button at the top right corner of the PC App's Tools-->Configuration window or use the LCD interface and select SYSTEM ENABLE.

See above & below, and also the PC Application (PC App) chapter for full screenshots of the various windows.


The features explained in Setpoint Control Method 1 -Indoor Loop ICR with One Tank also apply to Setpoint Control Method 4 - External HTS/CTS with Two Tanks:

- Typical Temperature Setpoints
- Summer Setback
- **Outdoor Reset function**


PC Application (PC APP)

NOTE: Before using the PC Application, refer to **Appendices** for installation instructions for the PC Application and USB driver for the COM port. Both must be installed in order to run the PC App and communicate with the control board.

Connect a USB cable between the PC and the control board USB connector located at the bottom center of the board. Use the Windows Start menu to launch the PC App. You should see a screen similar to the one below. The revision of the PC APP is shown in the top left corner of the screen. Click the *Connect* button to begin communications with the control board.

Once connected, the menus and buttons will become accessible, the number of Objects available and Read should appear (they should be the same) and the Polling LED will begin to flash. The PC time and date will appear at the bottom left corner of the screen. Clicking on "Control Board Date and Time" will display the current control board date and time. If the date and time need to be adjusted, click on menu *Tools—>Set Date and Time*. The control board date and time will be set to that of the PC.

PC Application Menus

The following pages describe the PC APP's menus in detail. There are six menus: File, View, Graphs, Tools, Windows, Help.

File Menu: This menu handles page arrangements. If one or multiple pages are open and arranged as desired for viewing, this page arrangement may be saved and re-used the next time the PC APP is used.

File-->Open: Opens a saved page arrangement.

File-->Save: Saves the current page arrangement under the current name.

File-->Exit: Exits the PC Application.

Windows Menu: This menu is used to arrange windows (pages), or to bring a particular window to the front.

Windows-->Cascade: Arranges windows one in front of the other each with a small right and down offset from the last.

Windows-->Tile Vertical:

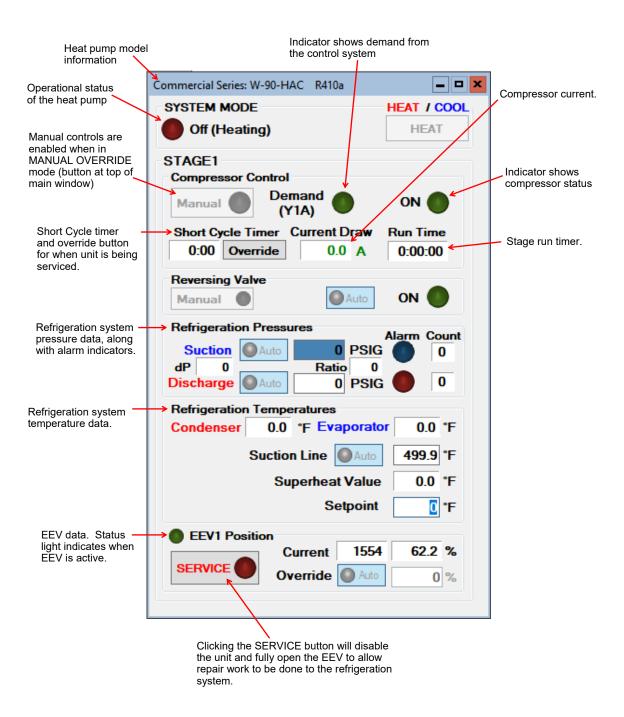
Windows-->Tile Horizontal:

Arranges windows side by side, stretching them fully from top to bottom.

Arranges windows up and down, stretching them fully from left to right

Windows-->Close All: Closes all open windows.

Help Menu: This shows information about the PC Application.


Help-->About: Displays the window shown to the right.

View Menu:

This menu handles all of the operational viewing screens. Clicking on the View submenus will open the page in the PC APP's frame. The next few pages of the manual show screenshots of each of the pages along with some descriptions of what is on each page.

View-->Control Panel: The main control panel window will open, shown below.

View-->Setpoint Control

Shows the on-board temperature control screen. This screen is only available when **Control Source HYD** on the Configuration Page is set to **Setpoints** (not **BACnet** or **Signals**).

Refer to the **Operation** chapter earlier in this manual for details.

View-->Alarms, Limits and Faults (ALARMS Tab):

NOTE: Greyed out Alarms in the PC APP are not applicable to the system setup and are not monitored by the control board. NOTE: Refer to Alarms and Faults screenshot below to see which alarms have a count.

Alarms without a count: These alarms only occur one time at which point they immediately create a Permanent Alarm.

Alarms with a count: When an alarm occurs the compressor will stop, the alarm count will increase and the Short Cycle Timer

will start. When the **SC Timer** expires the compressor will re-start. If no further alarms occur within **Count Reduce Time**, the alarm count will be reduced by 1. If another alarm occurs within **Count Reduce Time** (see **Configuration Page**) the count will increase by 1. If alarms continue to occur, when the

alarm count reaches the *Maximum Count* value a *Permanent Alarm* will occur.

Master Alarm: This alarm occurs when any permanent alarm occurs. It is used to simply indicate that there is an alarm.

Permanent Alarm: The compressor will be locked out until the **Permanent Alarm** is manually reset either by cycling the

power or clicking on the RESET button

Low Pressure: A low pressure alarm occurs when the suction pressure drops to or below the Low Pressure Cutout

value. The low pressure is checked just before a compressor start, if it is OK the compressor will start, otherwise an alarm will occur. When the compressor starts, the low pressure alarm will be ignored for the number of seconds that *Low Pressure Ignore* is set to, after which the low pressure alarm will be re-enabled. This allows a dip in suction pressure below the cutout point during startup without causing a

nuisance alarm.

High Pressure: A high pressure alarm occurs when the discharge pressure rises to or above the High Pressure Cutout

Value.

Compressor Monitor: This alarm occurs when the compressor protection module sends a fault signal to the control board, gener-

ally due to the compressor windings overheating. (W/WH-90/100 models do not have compressor protec-

tion modules.)

Compressor Status: This alarm occurs when there is current draw as measured by the current sensor but no call for the com-

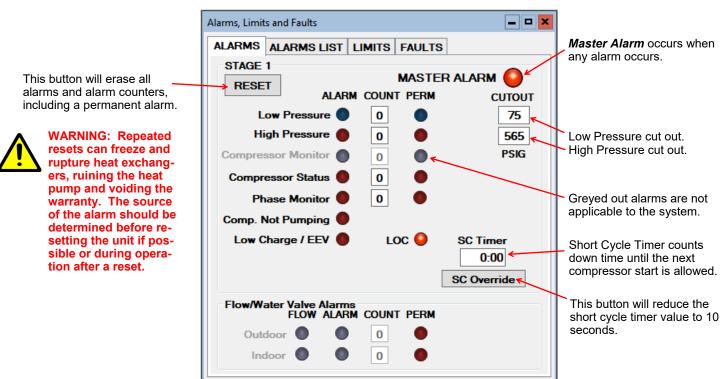
pressor to be on (i.e. welded contactor) or when there is call for the compressor to be on but there is no

compressor current draw (i.e. manual high pressure control is open or contactor failure).

Phase Monitor: This alarm occurs when the 3-Phase Monitor detects a fault condition and sends a fault signal to the con-

trol board.

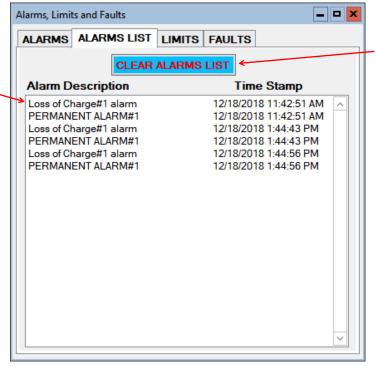
Comp. Not Pumping: Discharge pressure is less than 30 psi higher than suction pressure after 1 minute run time. It indicates


leaking reversing valve, manual high pressure control trip, bad contactor, or defective compressor.

Low Charge / EEV: This alarm occurs if the EEV has been at >99% for 20 minutes within first hour of a cycle.

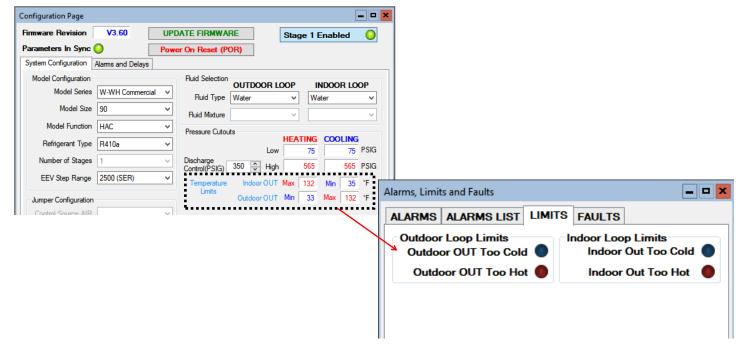
LOC (Loss of Charge): This alarm occurs if the low pressure and/or high pressure sensors read below 30 psig (207kPa).

Flow/Water Valve: Not applicable to W/WH-90/100.


Go the Alarms Troubleshooting section of the Troubleshooting chapter of the manual to address alarm issues.

View-->Alarms, Limits and Faults (ALARMS LIST Tab):

This tab show a history of alarms that have occurred since the PC APP was connected to the control board. This list will be lost when the PC APP is disconnected.

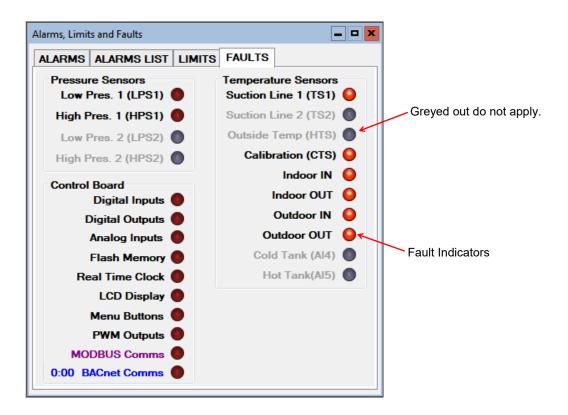

Each alarm that occurs while the PC APP is connected to the control board will appear here. The alarm type and a time stamp will be shown. The alarms list will be erased when the PC APP is disconnected from the control board.

This button will erase the alarm events in the Alarm List.

View-->Alarms, Limits and Faults (LIMITS Tab):

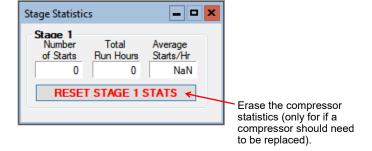
This tab shows temperatures that are out of limits but have not caused an alarm. These limits are shown on the **Tools-->Configuration** page.

View-->Alarms, Limits and Faults (FAULTS tab):

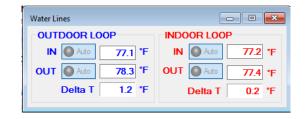

This tab shows hardware faults that could occur. If one of these faults occurs there may be a problem with the control board hardware, with LCD Display and buttons, or with a sensor.

If a fault occurs, some things to try:

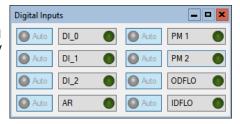
- Turn the power to the heat pump off for 20 seconds and then back on again.
- Use the menu item Tools-->Reset to Factory Defaults. If this clears the fault then the system configuration will have to be set up again.
- For LCD Display or Menu Button faults, turn off the power, disconnect and reconnect the cable between the LCD display board and the control board, then turn the power back on again.


If the fault persists then there is most likely a hardware problem, and the sensor, control board, or LCD display board will need to be replaced.

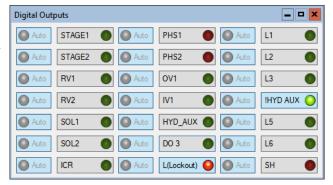
IMPORTANT NOTE: If the Indoor OUT (I_OUT) temperature sensor is faulty or disconnected, neither the heat pump nor the auxiliary will operate if using Setpoint Control. They will continue to operate under BACnet control.


View-->Stage Stats:

The compressor information: number of starts, run hours and starts per hour.


View-->Water Lines

Shows the water line temperatures.


View-->Digital Inputs

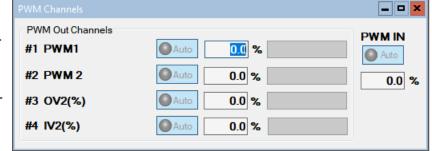
Shows the digital inputs and their individual status (ON/OFF). They may be individually controlled when in Manual Override Mode in order to facilitate troubleshooting.

View-->Digital Outputs

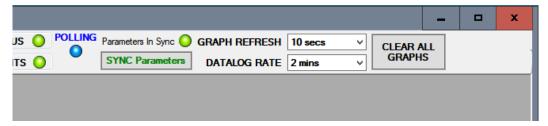
Shows the digital outputs and their individual status (ON/OFF). They may be individually controlled when in Manual Override Mode in order to facilitate troubleshooting.

View-->Analog Inputs

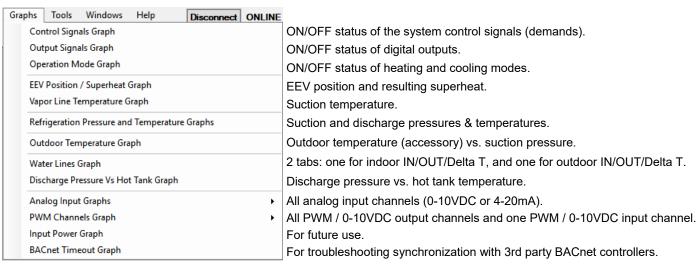
Shows the Analog inputs and their individual settings and values.


Click on the *EDIT* button to modify the blue boxes (button will now say *SAVE*). For each channel a name may be selected (up to 16 characters), and the multiplier and Offset values may be set to accommodate the connected sensor scaling. Signals may be 4-20mA (channel jumper on board ON) or 0-10VDC (channel jumper on board OFF). A variety of units are also available for selection of common measurement types. Click on *SAVE* to save the changes. Values are kept even when power is removed from the unit.

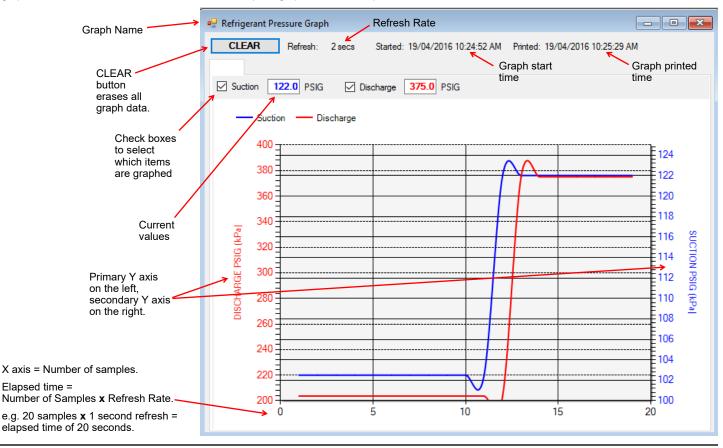
View-->PWM Channels


Shows the PWM channels and their individual status (0-100%). They may be individually controlled when in Manual Override Mode in order to facilitate trouble-shooting.

EMW-series does not use any PWM channels.

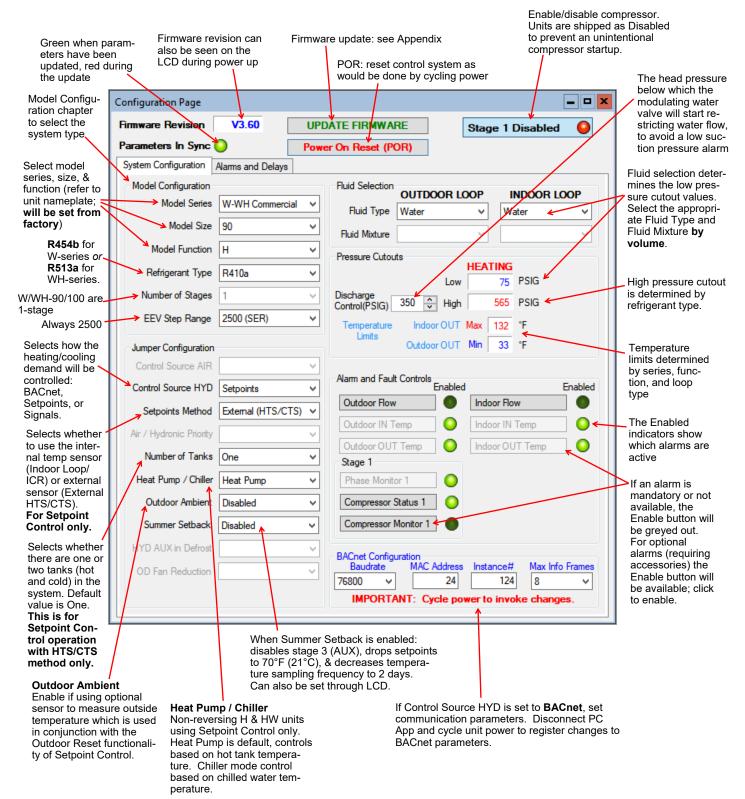


Graphs Menu:


This menu is a list of the available graphs. Graphs are real-time and show a time stamp of when the recording started as well as a current time which will show up if the graph is screen captured. Each graph has a CLEAR button which will erase the stored data and restart the graph. There is also a master CLEAR ALL GRAPHS button at the top right of the PC APP; this will clear all open graphs and re-start them all simultaneously to keep them in sync with each other. The refresh rate for the graphs is also located at the top right of the PC APP.

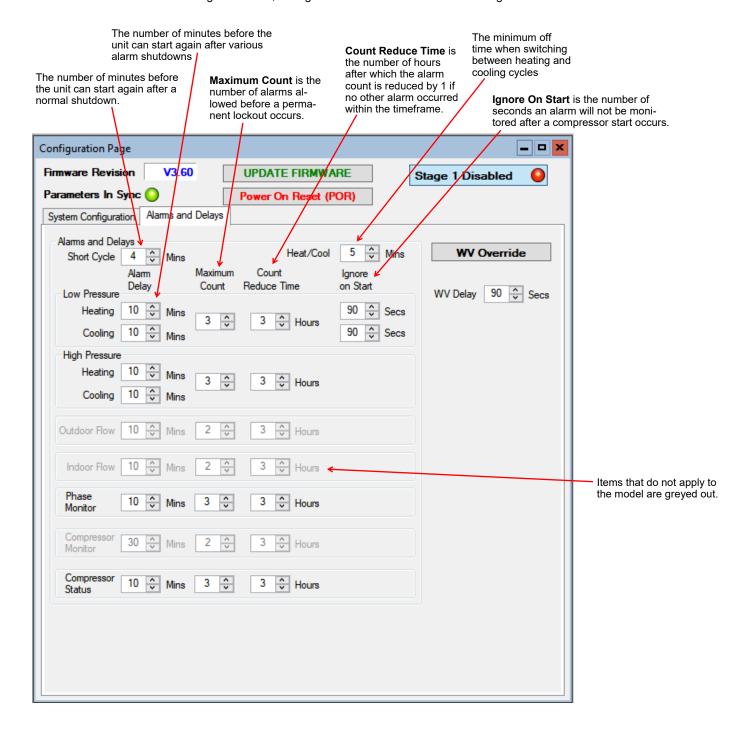
TIP: To screen print a graph and save it as a picture, press Print Screen on the keyboard and then paste into MS Paint or other graphics program. Select the desired graph with the selection tool and copy it to a new MS Paint, then save the file as the desired name.

Below is an example of a typical graph screen. Items that are checked will be plotted, unchecked items will not. The graph screens show the time the graph started as well as the current time to time stamp the graph when screen printed.



Tools Menu:

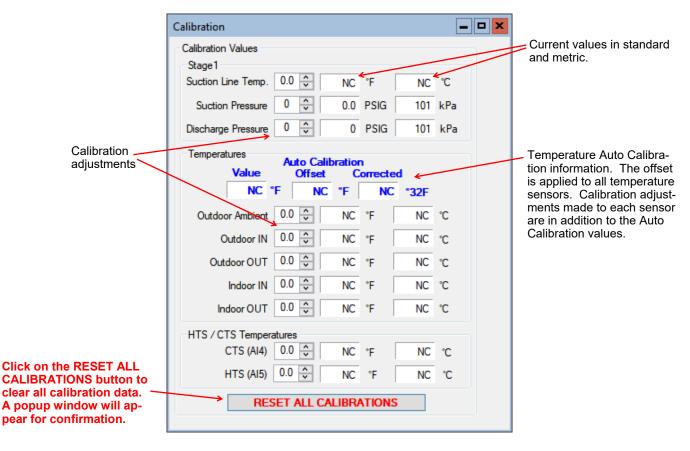
This is where various tools for system setup and monitoring are located.


Tools-->Configuration (System Configuration tab):

This is where the system setup is done. Settings should only be changed by a person who has a good understanding of system operation. Improper settings could cause the system to operate poorly or not at all.

Tools-->Configuration (Alarms and Delays tab):

Click on the UP/DOWN arrows to change the value, noting that values have both a low and high limit.



Tools-->Calibration:

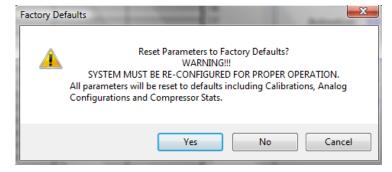
Generally there is no need for calibration.

The suction and discharge pressures may be calibrated in increments of 1 psi if there is a discrepancy in the readings when compared to a known good reference.

Temperature sensors may be adjusted in increments of 0.1°F. There is an **AUTO CALIBRATION** routine in the program that continually calibrates the temperatures sensors against an on board reference resistor by applying an offset to the temperature sensors. Calibration adjustments made here are in addition to the Auto Calibration routine.

Tools-->Set Date and Time:

This will synchronize the date and time of the control board with the computer's date and time, and will be necessary for new units or units that have been powered off for several days or more.


The date and time of both the computer and the control board are shown in the status bar at the bottom of the PC App.

Tools-->Reset to Factory Defaults:

This will reset all parameters to default values.

THE SYSTEM MUST BE RECONFIGURED AFTER A RESET IS PERFORMED.

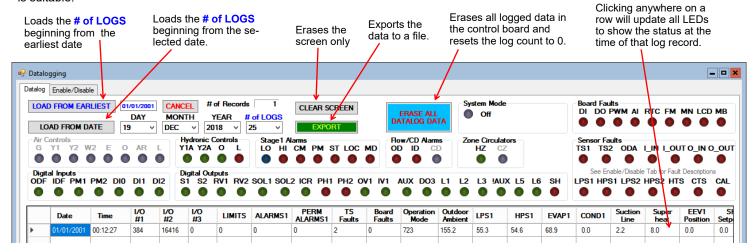
A reset will default the system to a two stage ATW Series Size 65 with Signals as the control source. Calibrations, alarm delays, analog configurations, compressor statistics, and Setpoint Control values will be returned to defaults as well.

Tools-->Update Firmware:

This will put the control board in bootloader mode in preparation for a firmware update using the PIC32.EXE program. See Appendix for firmware update procedure.

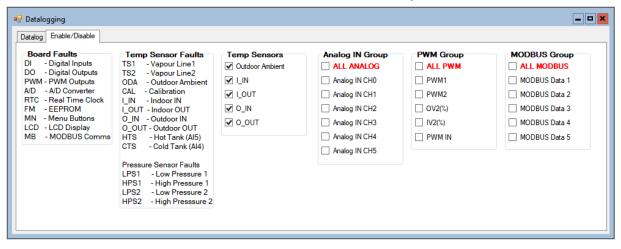
Tools-->Power On Reset (POR):

This will reset the control system as would be done by cycling power.


Tools-->Datalogging (Datalog tab):

A log will be automatically recorded at the following rates:

- SYSTEM DISABLED: every 10 minutes
- SYSTEM ENABLED: logging frequency set via the dropdown box at the top right of the PC App main window
- ALARM: logging frequency automatically set to 10 seconds, for 2 hours
- PERMANENT ALARM: every 10 minutes


The maximum number of datalog records is 32,224, which will take 45 days to fill up at the default recording rate of 2 minutes.

Note that loading datalogs is time-consuming. It is suggested to leave the # of LOGS at 25 until it is shown that the start date selected is suitable.

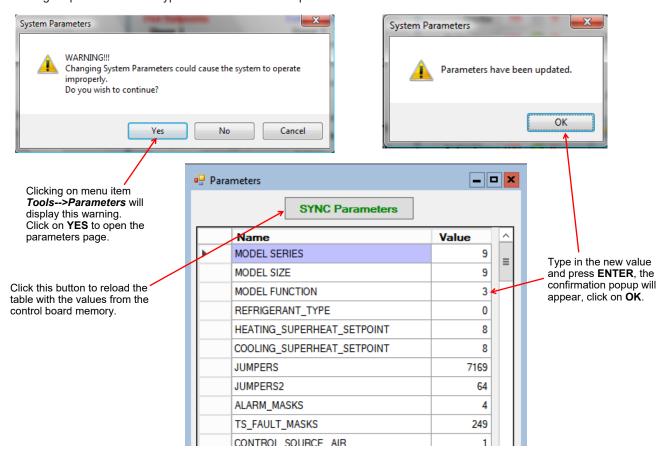
Tools-->Datalogging (Enable/Disable tab):

Click on the checkboxes to customize which columns are shown/hidden in the datalog table. Boxes must be checked to be included in exported data.

Tools-->MODBUS:

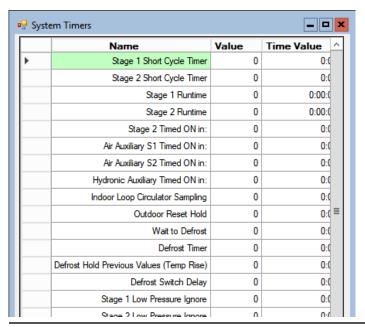
For future use.

Tools-->Objects:


This is a window to display the runtime data, which is not stored when the power is turned off. No changes are possible.

Number	Name	Туре	Present Value	Setpoint	Status Bits	Out of Service	ALARM	FAUL
46	ESX_TS2	Analog Input	0.0	0	0	False	False	False
47	ESX_TS3	Analog Input	0.0	0	0	False	False	False
48	ESX_TS4	Analog Input	0.0	0	0	False	False	False
49	ESX_TS5	Analog Input	0.0	0	0	False	False	False
50	ESX_TS6	Analog Input	0.0	0	0	False	False	False
51	LPS1	Analog Input	0.0	0	0	False	False	False
52	HPS1	Analog Input	0.0	0	0	False	False	False
53	LPS2	Analog Input	0.0	0	0	False	False	False
54	HPS2	Analog Input	0.0	0	0	False	False	False
55	INDOOR_FAN_TAC	Analog Input	0.0	0	0	False	False	False
56	AI0	Analog Input	0.0	0	0	False	False	False
57	Al1	Analog Input	0.0	0	0	False	False	False

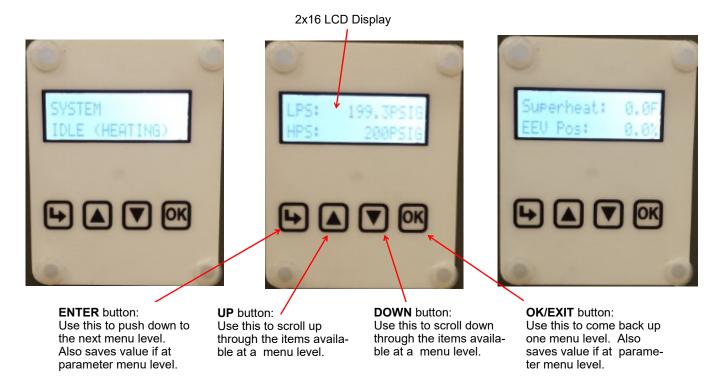
Tools-->Parameters:


WARNING! The Parameters page is for advanced use only. Changing parameter values can cause the system to stop functioning properly.

The parameters page shows all configurable memory spaces with their name and current value and allows them to be edited directly. To change a parameter value type in the new value and press ENTER.

Tools-->SYSTEM TIMERS:

This page shows all internal timers by name along with their current values.


Tools-->Jumpers:

This page shows internal jumper configurations, for developers.

JUMPERS 7169		
Unused Y2 Disabled in Cooling Heat(0) / Cool(1) Priority Stages - One(0) / Two(1)	Summer Setback Enabled PC Rejection - Room(0) / Pool(1) Units Heater(0) / Chiller(1)	Outdoo Set
0 0 0 1	1 1 0 0	0 0
15 12	11 8	7
UMPERS 2 64 Unused Spare	S1 Top Up Enabled System Enabled (ICR/HYD AUX)	HYD A
Cold Tank Enabled Hot Tank Enabled	Stage 2 Enabled Stage 1 Enabled	INIO
0 0 0 0	0 0 0 0	0 1
15 12	11 8	7

LCD Interface & Menus

These are examples of the unit status and operating data displayed when at the message display level (top level). Pressing ENTER will enter into the menu levels beginning with the Main Menu.

	is a list of the various tool table shows what is displa			on starting at the Main Menu level.	
ENTER (From Main)	ENTER (First Press)	ENTER (Second Press)	ENTER (Third Press)	Description	
Setpoint Control — Setpoints only if using		— Heating	— Stage 1 Setpoint	Stage 1 stops when water temperature rises to this point.	
Setpoint control)		— Stage 1 Delta	Stage 1 starts when water temperature drops below setpoint by this amount.		
			— AUX (S2) Setpoint	Stage 3 stops when water temperature rises to this point.	
			— AUX (S2) Delta	Stage 3 time delay starts when water temperature drops below setpoint by this amount.	
				— AUX (S3) Delay	Delays Stage 3 start by timer amount.
			— Outdoor Reset	Outdoor reset factor (diff. between steps)	
		— Cooling	— Stage 1 Setpoint	Stage 1 stops when water temperature drops to this point.	
			— Stage 1 Delta	Stage 1 starts when water temperature rises above setpoint by this amount.	

...continued on next page

Description

Enable summer setback.

	— Enable Setback?	— Enable		Enable summer setback.
(only if using Setpoint Control)		— Disable		Disable summer setback.
System EN/DIS	— Enable System?	— Enable		Enable compressor, auxiliary, and ICR.
		— Disable		Disable compressor, auxiliary, and ICR.
Service Mode	— Service Mode?	— No		Do not enter Service Mode.
		— Yes		Enter into Service Mode.
EEV Control	— EEV1	— Auto/Manual	— Auto	Puts EEV in Auto mode
			— Manual	Puts EEV in Manual mode
		— Manual Position	— EEV Position (%)	Enter desired EEV position
Configuration	— Control HYD	— Setpoints		On-board water temp. control—see Operation chapter
		— Signals		Hardwired Signal control
		— BACnet		BACnet control—see BACnet chapter
	Outdoor Reset (only if using Setpoint)	— Enable		Enables Outdoor Reset functionality
	Control)	— Disable		Disables Outdoor Reset functionality
	— Outdoor Ambient	— Enable		Enables accessory outdoor temp. sensor
		— Disable		Disables accessory outdoor temp. sensor
	— Setpoints Method	— ICR		Use Indoor Circulator Relay sampling
	(only if using Setpoint Control)	— HTS/CTS		Use external temperature sensors
	— Heat Pump / Chiller (only if using Setpoint Control, H/HW models)	— Heat Pump		Control on indoor loop water temperature
		— Chiller		Control on outdoor loop water temperature
	Number of Tanks (only if using Setpoint control with HTS/CTS)	— One Tank		One tank for heating/cooling functions
		— Two Tanks		Separate hot and cold tanks
	— Time Delays	— Short Cycle	— Short Cycle (min)	Enter short-cycle timer value
		— Heat/Cool	— Heat/Cool (min)	Enter minimum off time between modes
	— Units	— Standard		Standard units
		— Metric		Metric units (does not affect calibration units)
	— Set Time	— Hours		Set the system hours.
		— Minutes		Set the system minutes.
	— Set Date	— Day		Set the system day.
		— Month		Set the system month.
		— Year		Set the system year.
Calibration	— Suction 1		Suction Pressure.	Calibration in 1PSI intervals.
	— Discharge 1		Discharge Pressure	Calibration in 1PSI intervals.
	— Vapour Line 1		Suction line tempera-	Calibration in 0.1°F intervals
	— Outdoor Ambient		Outside air tempera- ture	Calibration in 0.1°F intervals
	— Outdoor IN Temp			Calibration in 0.1°F intervals
	— Outdoor OUT Temp			Calibration in 0.1°F intervals
	— Indoor IN Temp			Calibration in 0.1°F intervals
	— Indoor OUT Temp			Calibration in 0.1°F intervals
				Cambration in C.1.1 intorvato

ENTER

(Third Press)

ENTER

(Second Press)

Enable

Menu Tree Continued ENTER

(From Main)

Summer Setback

ENTER

(First Press)

— Enable Setback?

NOTE: Calibration is generally not required. Pressure sensors may be calibrated against a known source if needed. All temperature sensors have an Auto Calibration feature.

BACnet Interface

The BACnet interface is an MS/TP connection via RS-485 twisted pair. BACnet IP is not available.

Recommended wire: 22-24 AWG single twisted pair, 100-120 Ohms impedance, 17pF/ft or lower capacitance, with braided or aluminum foil shield, such as Belden 9841 or 89841.

The connector on the control board is a three wire removable screw connector. The signals are as follows:

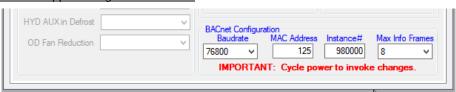
A: Communications line (+) (right pin)
B: Communications line (-) (middle pin)
C: Ground connection (left pin)

If connecting multiple units to one RS-485 connection point, connect the signal cable from the master building controller to the first unit. Connect the second unit to the first unit (in same connector), connect the third unit to the second unit, and so on until all units are connected (daisy-chain). Remove the TERM jumper (located just above the BACnet connector on control board) from all units except the last one. The shield ground should be connected only to the GND pin of the unit for single unit installations. For multiple units, the shield ground should only be connected to the GND pin of the last unit. The shield grounds for intermediate units should be connected together. The shield ground should be left unconnected at the building controller end for all cases.

Vendor: Maritime Geothermal Ltd.

Vendor ID: 260

Model Name: MGT GEN2 Control Board


The following parameters can be set via the PC App's Configuration Window:

1) Baud rate 9600, 19200, 38400, or 76800

2) MAC address

Maximum value is 125.

3) Instance number Maximum value is 4194303.

The BACnet parameter **Max_Master** has a fixed value of **127** in this device.

BACnet data is available regardless of the selected control method. In order to control the unit via the BACnet interface, set **Control Source** to **BACnet** either by using the PC App's configuration window or the LCD menus.

IMPORTANT: When constructing BACnet code to control the heat pump/chiller, give careful consideration to MINIMIZING CYCLING and MAXIMIZING RUN TIMES.

The heat pump/chiller can't do its work properly and will incur excessive wear if it is turning on and off every few minutes.

Note: object names are subject to change without prior notice.

TABLE 16 - BACnet OBJECTS - CONTROL SIGNALS (READ/WRITE)						
Name	Data Type	Description				
SYSTEM_Y1A	Binary Value	BV0	Present Value	Present Value Compressor (active is on)		
SYSTEM_O	Binary Value	BV2	Present Value Reversing valve. Inactive=HEATING, Active=COOLING (HAC units			
BACnet_Units	Binary Value	BV9	Present Value	Select units for BACnet objects. OFF=US standard, ON=metric		

TABLE 17 - BACnet OBJECTS - OPERATION MODE Description (Read Only)							
Name	Data Type	ID	Present Value	Description			
		AV5	2	Hydronic heating			
On anation Made	A I \ / - I		3	Hydronic cooling (HAC units only)			
Operation Mode Ana	Analog Value		11	Hydronic heating OFF			
			12	Hydronic cooling OFF (HAC units only)			
Note: Object is tvi	Note: Object is type Analog Value but value will always be an integer value.						

TABLE 18 - BACnet OBJECTS - LIMITS Description (Read Only)							
Name	ID	BIT#	Decimal Value*	Bit Description			
		0	1	Low Indoor OUT temperature			
Limits	AV6	1	2	High Indoor OUT temperature			
(Present Value)		2	4	Low Outdoor OUT temperature			
		3	8	High Outdoor OUT temperature			

Note: Limits object is type Analog Value but value is bit coded and may be decoded as such (integer value). Note *: Value is for a single alarm and reference only.

TA	ABLE 19 - BACnet OBJECTS - DATA (Read Only)								
	Name	ID	Property	Units	Description				
	AI0 (Comp1_Current)	AI0	Present Value	Amps	Compressor current draw				
	Al1 (Comp2_Current)	Al1	Present Value	User	N/A				
	Al2	Al2	Present Value	User	N/A				
	Al3	Al3	Present Value	degF (degC)	Compressor discharge line temperature				
	Al4 (CTS)	Al4	Present Value	degF (degC)	Cold tank temperature from sensor - requires accessory				
	AI5 (HTS)	AI5	Present Value	degF (degC)	Hot tank temperature from sensor - requires accessory				
	LPS1	Al6	Present Value	PSIG (kPa)	Low pressure value (suction pressure)				
	HPS1	AI7	Present Value	PSIG (kPa)	High pressure value (discharge pressure)				
	EVAP1	AI8	Present Value	degF (degC)	Evaporating Temperature				
Ħ	COND1	Al9	Present Value	degF (degC)	Condensing Temperature				
lnp	Suction Line 1	AI10	Present Value	degF (degC)	Suction line temperature				
- Analog Input	Superheat 1	Al11	Setpoint Value	degF (degC)	Evaporator superheat				
la	EEV1 Position	Al12	Present Value	%	EEV position (% open)				
٠,	LPS2	Al13	Present Value	PSIG (kPa)	N/A				
Туре	HPS2	Al14	Present Value	PSIG (kPa)	N/A				
	EVAP2	AI15	Present Value	degF (degC)	N/A				
	COND2	Al16	Setpoint Value	degF (degC)	N/A				
	Suction Line 2	AI17	Present Value	degF (degC)	N/A				
	Superheat 2	Al18	Setpoint Value	degF (degC)	N/A				
	EEV2 Position	Al19	Present Value	%	N/A				
	Outside Ambient	AI20	Present Value	degF (degC)	Outdoor Ambient temperature - requires accessory				
	O_IN	Al21	Present Value	degF (degC)	Outdoor IN temperature				
	O_OUT	Al22	Present Value	degF (degC)	Outdoor OUT temperature				
	I_IN	Al23	Present Value	degF (degC)	Indoor IN temperature				
	I_OUT	Al24	Present Value	degF (degC)	Indoor OUT temperature				
	PWM_IN	AV0	Present Value	%	N/A				
	PWM1 (OD Fan)	AV1	Present Value	%	N/A N/A				
	PWM2 PWM3 (OV2)	AV2 AV3	Present Value Present Value	%	OV2 - PWM or 0-10VDC for outdoor loop water valve				
Analog Value	PWM4 (IV2)	AV4	Present Value	%	IV2 - PWM or 0-10VDC for indoor loop water valve				
aloc	Operation Mode	AV5	Present Value	N/A	Description of mode - see Operation Mode Description table				
Ang	Limits description	AV6	Present Value	N/A	Description of active limits - see Limits Description table				
e - A	Permanent Alarms 1	AV7	Present Value	N/A	Description of active alarms - see Alarm Descriptions table				
Туре	Permanent Alarms 2	AV8	Present Value	N/A	N/A				
	Board Faults	AV9	Present Value	N/A	Description of active faults - see Fault Descriptions table				
	Sensor Faults	AV10	Present Value	N/A	Description of active faults - see Fault Descriptions table				
	STAGE1	BO0	Present Value	N/A	Compressor contactor				
=	STAGE2	BO1	Present Value	N/A	N/A				
Output	ICR (Indoor Circ)	BO2	Present Value	N/A	Indoor circulator control				
Q	DO0 (OV1)	BO3	Present Value	N/A	OV1 - 24VAC for outdoor loop water valve				
Binary	DO1 (IV1)	BO4	Present Value	N/A	IV1 - 24VAC for indoor loop water valve				
Bi	DO2 (HYD_AUX)	BO5	Present Value	N/A	Hydronic Auxiliary				
- -	DO3 (AUX_ONLY)	BO6	Present Value	N/A	N/A				
Type	PHS1	BO7	Present Value	N/A	Stage 1 dry contact pin for locked out on alarm				
	PHS2	BO8	Present Value	N/A	N/A				
e e	CONTROLS	BV9	Present Value	N/A	Control indicator: 0=local (man.override), 1=remote (BACnet)				
Binary Value	Outdoor Flow	BV10	Present Value	N/A	Outdoor Loop flow switch				
7	Indoor Flow	BV11	Present Value	N/A	Indoor Loop flow switch (reversing models only)				
ina	Phase Monitor1	BV12	Present Value	N/A	3-phase monitor				
	Phase Monitor2	BV13	Present Value	N/A	N/A				
Type	Comp Monitor1	BV14	Present Value	N/A	Compressor monitor				
É,	Comp Monitor2	BV15	Present Value	N/A	N/A				

TABLE 20 - BACne	TABLE 20 - BACnet OBJECTS - ALARM Descriptions (Read Only)					
Name	Data Type	ID	Description			
Al0 (Comp1 Current)	Analog Input	AI0	Status alarm (start / stop failure, from current sensor)			
Al1 (Comp2 Current)	Analog Input	Al1	N/A			
LPS1	Analog Input	Al6	Low pressure alarm			
HPS1	Analog Input	AI7	High pressure alarm			
LPS2	Analog Input	Al13	N/A			
HPS2	Analog Input	Al14	N/A			
Outdoor Flow	Binary Value	BV10	Outdoor loop flow alarm			
Indoor Flow	Binary Value	BV11	Indoor loop flow alarm (HAC models only)			
Phase Monitor1	Binary Value	BV12	3-phase monitor alarm			
Phase Monitor2	Binary Value	BV13	N/A			
Comp Monitor1	Binary Value	BV14	Compressor monitor alarm (from compressor protection module)			
Comp Monitor2	Binary Value	BV15	N/A			

Name	ID	BIT#	Decimal Value*	Bit Description
		0	1	Master permanent alarm (occurs when any alarm occurs)
		1	3	Low pressure heating mode alarm (suction pressure)
		2	5	Low pressure cooling mode alarm (suction pressure)
		3	9	High pressure heating mode alarm (discharge pressure)
		4	17	High pressure cooling mode alarm (discharge pressure)
Permanent Alarms 1 (Present Value)	AV7	5	33	Loss of charge alarm
,		6	65	3-phase monitor alarm
		7	129	Compressor monitor alarm (from compressor protection module)
		8	257	Status alarm (start / stop failure, from current sensor)
		14	16,385	Outdoor loop flow alarm
		15*	32,769	Indoor loop flow alarm (reversing models only)
		-	-	N/A
Permanent Alarms 2	AV8			
(Present Value)	AVO			

Note: Permanent Alarm objects are type Analog Value but values are bit coded and may be decoded as such (integer value). Note *: Value is for a single alarm and reference only. Value includes + 1 for Master Alarm

Note: object names are subject to change without prior notice.

TABLE 21 - BAC	TABLE 21 - BACnet OBJECTS - FAULT Descriptions (Read Only)					
Name	Data Type	ID	Description			
Al4 (Cold Tank)	Analog Input	AI0	Cold tank temperature sensor faulty or disconnected - requires accessory			
Al5 (Hot Tank)	Analog Input	Al1	Hot tank temperature sensor faulty or disconnected - requires accessory			
LPS1	Analog Input	Al6	Low pressure sensor faulty or disconnected			
HPS1	Analog Input	AI7	High pressure sensor faulty or disconnected			
LPS2	Analog Input	Al13	N/A			
HPS2	Analog Input	Al14	N/A			
Suction Line1	Analog Input	Al10	Suction line 1 temperature sensor faulty or disconnected.			
Suction Line2	Analog Input	Al17	N/A			
Outdoor Ambient	Analog Input	Al20	Outdoor temperature sensor faulty or disconnected - requires accessory			
O_IN	Analog Input	Al21	Outdoor IN temperature sensor faulty or disconnected			
O_OUT	Analog Input	Al22	Outdoor OUT temperature sensor faulty or disconnected			
I_IN	Analog Input	Al23	Indoor IN temperature sensor faulty or disconnected			
I_OUT	Analog Input	Al24	Indoor OUT temperature sensor faulty or disconnected			

Name	ID	BIT#	Decimal Value*	Bit Description
		0		Digital inputs
		1	2	Digital outputs
		2	4	PWM outputs
Board Faults	AV9	3	8	Analog to digital conversion
(Present Value)	AVV	4	16	Real time clock
		5	32	EEPROM memory
		6	64	Menu buttons
		7	128	LCD interface
		0	1	Stage 1 suction line temperature sensor
		1	2	N/A
		2	4	Outdoor Ambient temperature sensor - accessory
		3		Calibration temperature resistor plug
Sensor Faults	AV10	4	16	Indoor IN temperature sensor
(Present Value)	AVIO	5	32	Indoor OUT temperature sensor
		6	64	Outdoor IN temperature sensor
		7	128	Outdoor OUT temperature sensor
		8	256	Cold tank temperature sensor on Al4 - accessory
		9	512	Hot tank temperature sensor on Al5 - accessory

Note: Board and Sensor Fault objects are type Analog Value but values are bit coded and may be decoded as such (integer value). Note *: Value is for a single fault and reference only.

Startup Procedure

The Startup Record located in this manual is used in conjunction with this startup procedure to provide a detailed record of the installation. A completed copy should be left on site, a copy kept on file by the installer, and a copy should be sent to Maritime Geothermal Ltd..

Check the boxes or fill in the data as each step is completed. For data boxes, circle the appropriate units.

Pre-Start Inspection

Indoor Loop (Hydronic Loop):

- 1. Verify that all shutoff valves are fully open and there are no restrictions in the piping from the heat pump to the indoor loop, and that full flow is available to the heat pump.
- 2. Verify that the entire system has been flooded and all the air has been purged as much as possible. Further purging may be required after the system has been operating for a while.
- 3. Verify that the loop contains the proper mix of antifreeze (if used) for the intended application. If applicable, record the type of antifreeze and the mixture value on the startup sheet, circle % Vol. or % Weight.
- **4.** Record the static loop pressure on the startup sheet.

Outdoor Loop (Ground Loop):

- 1. Verify that all shutoff valves are fully open and there are no restrictions in the piping from the heat pump to the ground loop, and that full flow is available to the heat pump.
- 2. Verify that the entire system has been flooded and all the air has been purged as much as possible. Further purging may be required after the system has been operating for a while.
- 3. Verify that the loop contains the proper mix of antifreeze for the intended application. Record the type of antifreeze and the mixture value on the startup sheet; circle % Vol. or % Weight.
- **4.** Record the static loop pressure on the startup sheet.

Outdoor Loop (Ground Water):

- 1. Verify there are no leaks in the connections to the unit. Verify the water valve is installed and properly oriented in the OUT line.
- 2. Verify that there is flow control in the OUT line.

Domestic Hot Water (Desuperheater): HACW/HW only

- 1. Verify that all shutoff valves are fully open and there are no restrictions in the piping from the heat pump to the domestic hot water tank
- 2. Verify that the entire system has been flooded and all the air has been purged as much as possible. Further purging may be required after the system has been operating for a while.
- 3. Verify that the brown wire with the insulated terminal is disconnected in the electrical box. Refer to the schematic diagram for more information.

Electrical:

- 1. Ensure the power to the unit is off.
- 2. Verify all high voltage connections. Ensure that there are no stray wire strands, all connections are tight, and the ground wire is connected tightly to the ground connector.
- 3. Record the circuit breaker size and wire gauge for the heat pump.
- 4. Verify that the control connections to the unit are properly connected and all control signals are off, so that the unit will not start up when the power is turned on.
- 5. Verify that the circulator pumps are connected to the proper voltages. Record the voltages of the circulator pumps.
- 6. Ensure all access panels except the one that provides access to the electrical box are in place.
- 7. Turn on power at least 2 hours before startup so that crankcase heaters are energized (to prevent flooded starts).

Unit Startup

The unit is now ready to be started. The steps below outline the procedure for starting the unit and verifying proper operation of the unit. It is recommended that safety glasses be worn during the following procedures.

IMPORTANT NOTE: The unit is shipped with the SYSTEM DISABLED in order to prevent the unit from starting when the power is first turned on. Follow the instructions below in the Preparation section to enable the compressor.

The LCD will automatically scroll through various data including low (suction) pressure, high (discharge) pressure, superheat, EEV position and water in/out temperatures.

Preparation:

- 1. Set all controls (including zone thermostats) to OFF. Turn power on to the heat pump. All LED's on the control board should turn on, the LCD should say "MGT GEN2 VERx.xx" on line 1 and "Zeroing EEV's" on line 2. You should be able to hear the EEV moving (a clicking sound).
- 2. Measure the following voltages on the compressor contactor and record them on the startup sheet: L1-L2, L2-L3, L1-L3.
- 3. Connect a USB cable between the USB connector on the board and a laptop with the PC App installed (recommended but optional).
- 4. Select the desired Control Source HYD via the PC APP Configuration Page or via the LCD Configuration Menu.
- 5. Enable the system either with the PC App's Configuration Page System Enable/Disable button or via the LCD display.

Heating Mode:

- Adjust the Setpoint Control settings via the PC App or LCD to activate stage 1 (or activate via BACnet or 24V signal if used).
 The EEV will begin to open and the compressor will start, as will the circulator pumps.
- 2. Check the PC App or LCD. The suction and discharge pressures will vary based on the outdoor loop temperature and the indoor loop temperature, but for a typical startup they should be 90-110 psig and 260-360 psig for W/WP-series or 25-35 psig and 105-200 psig for WH-series.
- 3. Monitor the unit via the PC APP or LCD while the unit runs, and record the following after 10 minutes of run time:
 - 1. Suction pressure
 - 2. Discharge pressure
 - 3. Four water line temperatures: Indoor IN, Indoor OUT, Outdoor IN, Outdoor OUT
 - 4. Outdoor Delta T (should be 5-8°F, 3-4°C)
 - 5. Indoor Delta T (should be 8-12°F, 4-6°C)
 - Compressor L1(C) current (black wire, place meter between electrical box and compressor)
- 4. Adjust the control setpoints to the desired buffer tank temperature and let the unit run through a cycle.
- 5. For units with desuperheater (HACW/HW), turn the power off to the unit. Connect the brown wire with the blue insulated terminal to the compressor contactor as shown on the electrical box diagram. Turn the DHW switch in the unit post on. Turn the power to the unit on.
- 6. Open a zone (or zones) and let the tank cool down until stage 1 is activated. Close the zone(s) again.
- 7. Verify the DHW IN and DHW OUT temperatures (if applicable) by hand (caution: pipes can get hot). If the DHW OUT line does not become hotter than the DHW IN line the circulator is air locked. Bleed the air from the system and check the temperature differential again to ensure there is flow from the circulator.
- 8. Activate AUX heat if equipped by changing the AUX setpoints. Be sure the auxiliary heat breaker at the panel is ON. Measure the L1 current draw with an clamp meter and record the value.

Cooling Mode: HACW/HAC only

- 1. Set a zone thermostat to cooling mode or otherwise activate cooling mode by sending an "O" signal to the heat pump. Adjust the setpoints via the PC App or LCD to activate stage 1.
- 2. Monitor the unit via the PC APP or LCD Display while the unit runs, and record the following after 10 minutes of run time:
 - 1. Suction pressure
 - 2. Discharge pressure
 - 3. Four water line temperatures: Indoor IN, Indoor OUT, Outdoor IN, Outdoor OUT
 - 4. Outdoor Delta T (should be 8-12°F, 4-6°C)
 - 5. Indoor Delta T (should be 5-8°F, 3-4°C)
- 3. Adjust the setpoints and let the unit run through a cycle.

Final Inspection:

- 1. Turn the power off to the unit and remove all test equipment.
- 2. Install the electrical box cover and the access panel on the heat pump. Install the service port caps securely to prevent refrigerant loss.
- 3. Do a final check for leaks/spills and ensure the area is clean.
- **4.** Turn the power on to the unit. Set the heat pump setpoints and zone thermostats to their final settings.

Startup Record:

1. Sign and date the Startup Record and have the site personnel sign as well. Leave the Startup Record with the site personnel, retain a copy for filing and send a copy to Maritime Geothermal Ltd. for warranty registration.

		Startup Reco	ord						
Installation Site	T	Startup Date	Installer						
City		- Стантар 2 ало	Company						
Province		Check boxes unless	Model						
		asked to record data.							
Country		Circle data units.	Serial #						
Customer Name		Customer Phone #							
	PI	RE-START INSPI	ECTION						
Indoor Loop	All shut-off valve are open (full	flow available)							
(Hydronic)	Loop is full and purged of air								
	Antifreeze type, if any								
	Antifreeze concentration, if any	,		% Vo	lume	% W	eight		
	Loop static pressure			PSI	kPa				
Ground Loop System	All shut-off valve are open (full	flow available)							
System	Loop is full and purged of air								
	Antifreeze type								
	Antifreeze concentration			% Vo	lume	% W	eight		
	Loop static pressure			PSI	kPa				
Ground Water System	Water valve installed in OUT lin	ne							
	Flow control installed in OUT li	ne							
Domestic Hot Water	All shut-off valves are open								
HACW/HW only	Lines are full and purged								
	Desuperheater pump wire is di	sconnected							
Electrical	High voltage connections are c	orrect and securely fas	tened						
	Circuit breaker (or fuse) size ar	nd wire gauge for Heat	Pump	Α		Ga.			
	Circulator pump voltages (Outo	loor 1, Outdoor 2, Indoo	or 1)	V		V		V	
	Low voltage connections are co	orrect and securely fast	ened						
		STARTUP DA	TA						
Preparation	Voltage across L1 and L2, L1 a	and L3, L2 and L3							VAC
Heating Mode (10 minutes)	Suction Pressure / Discharge F	Pressure					psig	kPa	
(10 mmutes)	Outdoor In, Outdoor Out, and I	Delta T		In		Out		°F	°C
	Outdoor Flow			Igpm	US	gpm	L/s		
	Compressor L1 (black wire) cu	rrent		А					
	Heating setpoint and discharge	pressure at cycle end		°F	°C		psig	kPa	
	Domestic Hot Water functioning	g (if equipped)?							-'
Cooling Mode (10 minutes)	Suction Pressure / Discharge F	Pressure					psig	kPa	
HACW/HAC only	Outdoor In, Outdoor Out, and I	Delta T		In		Out		°F	°C
	Cooling setpoint and suction pr	essure at cycle end		°F	°C		psig	kPa	
Final Setpoints	Heating S1 Setpoint, S1 Delta,	S2 Setpoint, S2 Delta					°F	°C	
	Cooling S1 Setpoint, S1 Delta,	S2 Setpoint, S2 Delta					°F	°C	

Date:		Installer Signature:		Client Signature:			
A to	A total of three copies are required: one for the homeowner, one for the installer, and one to be sent to Maritime Geothermal Ltd.						

Routine Maintenance

MAINTENANCE SCHEDULE					
It	em	Interval	Procedure		
Strainers (if present)	The property of the second sec	Monthly (more frequently immediately after initial startup)	Inspect and clean if necessary.		
Compressor Crankcase Heaters		Monthly	Check if operational and not shorted out. Replace if necessary. (Prevents flooded starts.)		
Compressor Contactor	NCCAMARCO WAS COME OF THE PARTY	1 year	Inspect for pitted / burned points or loose wires. If necessary, replace contactor or tighten wires.		
LCD Interface or PC App	System IDLE (HEATTHS)	When heat pump problem is suspected	Check for alarms and faults (only necessary if alarms not reported through a BACnet system). Rectify problem if alarms found. See Trouble-shooting chapter.		
Heat Exchangers		When experiencing performance degradation that is not explained by a refrigeration circuit problem or low loop flow rate	Disconnect the affected loop and flush heat exchanger with a lime removing solution. Generally not required for closed loop or cold water open loop systems; whenever system performance is reduced for warm water open loop systems.		

Troubleshooting Guide

The following steps are for troubleshooting the heat pump. Repair procedures and reference refrigeration circuit diagrams can be found later in this manual.

- **STEP 1:** Verify that the LCD Interface is functioning . If it is not, proceed to POWER SUPPLY TROUBLE SHOOTING, otherwise proceed to STEP 2.
- STEP 2: Record the alarm shown on the LCD Interface or use the PC APP Alarms page to determine the alarm type. Proceed to the ALARMS TROUBLESHOOTING section.
- **STEP 3:** If there are no alarms and STAGE1 is showing as on (LCD Interface, PC APP or LED on control board) but the compressor is not operating, does not attempt to start, attempts to start but cannot, starts hard, or starts but does not sound normal, proceed to the COMPRESSOR TROUBLESHOOTING section.
- **STEP 4:** If the compressor starts and sounds normal, this means the compressor is most likely OK. Proceed to the OPERATION TROUBLESHOOTING section.
- **NOTE:** To speed up the troubleshooting process, if using the **PC Application**, click on **SC Override** to reduce the short cycle timer to 10 seconds.

POWER SUPP	POWER SUPPLY TROUBLESHOOTING					
Fault	Possible Cause	Verification	Recommended Action			
No power to the heat pump	Disconnect switch open (if installed)	Verify disconnect switch is in the ON position.	Determine why the disconnect switch was opened; if all is OK close the switch.			
	Fuse blown / breaker tripped	At heat pump disconnect box, voltmeter shows 208-575VAC on the line side but not on the load side.	Reset breaker or replace fuse with proper size and type. (Timedelay type "D")			
No heartbeat on control board	Transformer breaker tripped (or fuse blown for those without breaker)	Breaker on transformer is sticking out (or fuse looks burnt).	Push breaker back in. If it trips again locate cause of short circuit and correct (or replace fuse) .			
	Faulty transformer	Transformer breaker is not tripped (or fuse not blown), 208-575VAC is present across L1 and L3 of the compressor contactor but 24VAC is not present across 24VAC and COM of the control board.	Replace transformer.			
	Faulty control board	24VAC is present across 24VAC and COM of the control board.	Replace the control board.			
No display on aquastat (if used)	No power from transformer	See No heartbeat on control board.				
	Faulty wiring between heat pump and aquastat	24VAC is not present across 24V and COM of the aquastat.	Correct the wiring.			
	Faulty aquastat	24VAC is present across COM and 24V of the aquastat but aquastat has no display.	Replace aquastat.			

ഗ
<u>'</u>
_
ш
\vdash
-
_
Q
\sim
\circ
11
$\overline{}$
\circ
ш
B
$\overline{}$
.~
-
\sim
ᅌ
- 1
유
0

ALARM TROUBLESHOOTING				
Alarm/Fault	Description	Recommended Action		
	ing function of the GEN2 Control Board is a very useful tool for trounit operation up to and including the time at which the alarm(s) occu			
Low Pressure	Occurs when the suction pressure drops to or below the <i>Low Pressure Cutout</i> value. The low pressure is checked just before a compressor start; if it is OK compressor will start, otherwise alarm will occur. When compressor starts, a low pressure condition will be ignored for the number of seconds that <i>Low Pressure Ignore</i> is set to, after which the low pressure alarm will be re-enabled. This allows a dip in suction pressure below the cutout point during startup without causing a nuisance alarm.	Go to the Low Pressure section of the mode the unit was operating in at the time of the alarm.		
High Pressure	A high pressure alarm occurs when the discharge pressure rises to or above the <i>High Pressure Cutout</i> Value.	Go to the High Pressure section of the mode the unit was operating in at the time of the alarm.		
Compressor Monitor (Stage 1 or Stage 2)	This alarm occurs when the compressor protection module (if present) sends a fault signal to the control board, generally due to the compressor windings overheating.	Go to Compressor section.		
Compressor Status	This alarm occurs when there is a current draw on the compressor as measured by the current sensor but no call for the compressor to be on (welded contactor) or when there is a call for the compressor to be on but there is no compressor current draw (manual high pressure control is open or contactor failure).	Check contactor if compressor is staying on when it should be off. Go to Compressor section if compressor is not on when it should be. Also check for tripped manual high pressure control.		
Phase Monitor	This alarm occurs when the 3-phase monitor detects a fault condition and sends a fault signal to the control board.	Verify power supply for under/ over voltages as well as phase balance. Check com- pressor contactors for pits or burns. Also check for tripped manual high pressure control.		
Not Pumping / Man HP	Discharge pressure is less than 30 psi higher than suction pressure after 2 minutes run time. It indicates leaking reversing valve, compressor very hot and tripped on internal overload, manual high pressure control trip, bad contactor, or defective compressor.	Check for reversing valve not seated properly, tripped manual high pressure control, or a contactor or compressor problem.		
Low Charge / EEV	EEV position has been above 99% for 20 minutes within the first hour of cycle.	Check system for refrigerant leak. Also check that EEV for proper operation (see <u>EEV</u> <u>Troubleshooting</u> section)		
LOC [Loss of Charge]	This alarm occurs if the low pressure and/or high pressure sensors are below 30 psig (207 kPa).	Check system for refrigerant leak. Check for incorrect pressure sensor reading.		
Outdoor Flow	Low or no outdoor loop flow from flow switch. Ignored on compressor start for number of seconds the Outdoor Flow <i>Ignore on Start</i> is set to. Alarm monitoring will begin when timer expires.	Check outdoor flow switch. Check outdoor loop flow.		
Indoor Flow	Reversing -HAC units only: low or no indoor loop flow from flow switch. Ignored on compressor start for number of seconds the Indoor Flow <i>Ignore on Start</i> is set to. Alarm monitoring will begin when timer expires.	Check indoor flow switch. Check indoor loop flow.		
Leak Detector / R454b Leak (A2L W-series only)	Refrigerant sensor detected the presence of refrigerant inside the cabinet.	Locate and fix leak, taking all necessary precautions associated with A2L refrigerants. See Service Procedures chapter.		

FAULT TROUBLES	FAULT TROUBLESHOOTING				
Alarm/Fault	Description	Recommended Action			
Pressure Sensors	The sensor is reading outside of the acceptable range. Check to ensure connector is on securely.	Replace the pressure sensor. If this does not rectify the problem, replace the control board.			
Temperature Sensors	The sensor is reading outside of the acceptable range. Check to ensure connector is on securely.	Replace the temperature sensor. If this does not rectify the problem, replace the control board.			
Control Board: - Digital Inputs - Digital Outputs - Analog Inputs - Real Time Clock - PWM Outputs	A failure has occurred and the indicated section of the control board may no longer work properly.	Cycle the power a few times; if the fault persists replace the control board.			
Control Board: - Flash Memory	A failure has occurred and stored data may be corrupt.	It may be possible to correct this by using the menu item <i>Tools—Reset to Factory Defaults</i> . If this clears the fault then the system configuration will have to be set up again.			
Control Board: - Menu Buttons	A failure has occurred and the control board may no longer respond to menu button key presses.	Try turning off the power, disconnecting and reconnecting the cable between the LCD Interface board and the Control Board, and then turning the power			
Control Board: - LCD Interface / LCD Display	A failure has occurred and display may show erratic data, no data or may not turn on at all.	back on again. If this does not work then either the LDC Display board, the cable, or the driver section of the Control Board may be faulty.			
Control Board: - BACnet Comms	BACnet communications experienced a timeout.	See BACnet TROUBLESHOOTING below.			
MODBUS: - Main Comms	Hardware problem on heat pump control board.	24V DC is not present across 24VDC and GND at lower right of control board. Replace board if voltage not correct.			
		Remove MODBUS screw terminal connector from board as well as jumper from TERM (located just above the MODBUS connector). Using a multimeter set to DC volts with negative probe on B and positive probe on A , confirm there is +2.5VDC . Replace board if voltage not correct.			
	MODBUS termination problem.	Verify MODBUS TERM jumper is in place on control board. Install jumper if missing.			
MODBUS: - R454b Leak Detector	Refrigerant detector communications experienced a timeout.	See LEAK DETECTOR TROUBLESHOOTING on next page.			

BACnet TROUBLESHOOTING				
Fault	Possible Cause	Verification	Recommended Action	
BACnet communications not working	Selected baud rate does not match building con- trol system	Check baud rate of system.	Adjust BACnet parameters in the PC App's Tools>Configuration	
properly or BACnet fault	Selected MAC address and/or Instance # conflict with other devices on the network	Check MAC address and Instance # in relation to other system devices.	window. Cycle power to invoke any changes.	
indication	BACnet wiring or termi- nation problem	Verify correct twisted pair wire and termination in the BACnet Interface chapter (earlier).	Correct wiring.	
	Hardware problem on heat pump control board	Remove BACnet screw terminal connector from board & jumper from TERM (located above BACnet connector). Using multimeter set to DC volts with black probe on B and red probe on A , confirm there is +2.5VDC .	Replace board if voltage not correct.	

LEAK DETECTOR TROUBLESHOOTING					
Fault	Possible Cause	Verification	Recommended Action		
Refrigerant de- tector not work-	Hardware problem on heat pump control board	5V DC is not present across 5VDC and GND at the lower right of control board.	Replace board if voltage not correct.		
ing properly or MODBUS R454b Leak Detector fault indication		Remove MODBUS screw terminal connector from board & jumper from TERM (located above BACnet connector). Using multimeter set to DC volts with black probe on B and red probe on A , confirm there is +2.5VDC .	Replace board if voltage not correct.		
	MODBUS termination problem	Verify MODBUS TERM jumper is in place on control board.	Install jumper if missing.		
	Faulty refrigerant leak detector	5V DC is present on board as per above, termination is correct, but problem persists.	Replace leak detector.		

COMPRESSOR	COMPRESSOR TROUBLESHOOTING				
Fault	Possible Cause	Verification	Recommended Action		
Compressor will not start	Faulty control board	No 24vac output on STAGE1 or STAGE2 when compressor should be operating.	Replace control board.		
	Loose or faulty wiring	Check all compressor wiring, including inside compressor electrical box.	Fix any loose connections. Replace any damaged wires.		
	Faulty compressor contactor	Voltage on line side with contactor held closed, but no voltage on one or both terminals on the load side. Points pitted or burned. Or, 24VAC across coil but contactor will not engage.	Replace contactor.		
	Thermal overload on compressor tripped	Ohmmeter shows reading when placed across R and S terminals and infinity between C & R or C & S. A valid resistance reading is present again after the compressor has cooled down.	Proceed to Operation Trouble- shooting (particularly high suction pressure and high discharge pres- sure) to determine the cause of the thermal overload trip.		
	Burned out motor (open winding)	Remove wires from compressor. Ohmmeter shows infinite resistance between any two terminals Note: Be sure compressor overload has had a chance to reset. If compressor is hot this may take several hours.	Replace the compressor.		
	Burned out motor (shorted windings)	Remove wires from compressor. Resistance between any two terminals is below the specified value.	Replace the compressor.		
	Motor shorted to ground	Remove wires from compressor. Verify infinite resistance between each terminal and ground.	If any terminal to ground is not infinite replace the compressor.		
	Seized compressor due to locked or damaged mechanism	Compressor attempts to start but trips its internal overload after a few seconds. (Run capacitor already verified for single phase units.)	Attempt to "rock" compressor free. If normal operation cannot be established, replace compressor.		
Compressor starts hard	Compressor is "tight" due to damaged mechanism	Compressor attempts to start but trips its internal overload after a few seconds. Run capacitor has been verified already.	Attempt to "rock" compressor free. If normal operation cannot be established, replace compressor.		

OPERATION T	ROUBLESHOOTING -	HEATING MODE	
Fault	Possible Cause	Verification	Recommended Action
High or low suction or dis- charge pressure	Faulty sensor	Compare pressure sensor reading against a known reference such as a new refrigeration manifold set.	Check wiring, replace sensor. If problem persists replace control board.
High Discharge Pressure	Low or no indoor loop flow	Delta T across the indoor loop ports should be 8-12°F (3-6°C), or compare pressure drop to the tables for the unit.	Increase flow rate if new installation, check for fouled heat exchanger if existing installation.
	Temperature setpoint(s) too high (if using BACnet or Signals control)	Use PC APP to verify that Indoor OUT does not exceed 130°F (54°C) for W-series or 160°F (71°C) for WH-series.	Reduce setpoint(s).
	EEV stuck almost closed or partially blocked by foreign object	Manually adjusting the EEV does not affect the superheat or the suction pressure. High superheat and low suction pressure.	Go to EEV troubleshooting section.
	Filter-dryer plugged	Feel each end of the filter-dryer; they should be the same temperature. If there is a temperature difference then it is plugged. Also causes low suction pressure.	Replace filter-dryer.
	Unit is overcharged (after servicing)	High subcooling, low indoor loop delta T.	Remove 1/2 lb of refrigerant at a time and verify that the discharge pressure reduces. Or remove charge and weigh back in the amount listed on nameplate.
Low Suction Pressure	Indoor OUT temperature too cold (on startup or if unit has been off for extended period).	Ensure Indoor OUT temperature is above the low limit indicated in the Model Specific Information chapter.	Reduce flow temporarily until Indoor OUT temperature has risen sufficiently.
	Low or no outdoor loop flow	Delta T across the outdoor loop ports should be 5-7°F (3-4°C), or compare pressure drop to the tables for the unit.	Determine the cause of the flow restriction and correct it. Verify pumps are working and sized correctly for ground loop systems. Verify well pump and water valve is working for ground water systems.
	Entering liquid temperature too cold	Measure the entering liquid temperature. Most likely caused by undersized ground loop.	Increase the size of the ground loop.
	Dirty or fouled outdoor loop coaxial heat ex- changer (typically for open loop, unlikely for ground loop)	Disconnect the water lines and check the inside of the pipes for scale deposits.	Backflush the heat exchanger with a calcium-removing cleaning solution.
	TS1 temperature sensor not reading properly	If the sensor is reading low, the superheat will appear high, which causes the EEV to continually close.	Verify EEV position is low compared to normal. Check temperature sensor, replace if necessary.
	Filter-dryer plugged	Feel each end of the filter-dryer; they should be the same temperature. If there is a temperature difference then it is plugged. Also causes low suction pressure.	Replace filter-dryer.

Recommended Action

Low suction pressure (continued)	EEV stuck almost closed or partially blocked by foreign object	Manually adjusting the EEV does not affect the superheat or the suction pressure. High superheat and discharge pressure.	Go to EEV troubleshooting section.
	Low refrigerant charge	Superheat is high, EEV position is high.	Locate the leak and repair it. Spray Nine, a sniffer, and/or dye are common methods of locating a leak.
High Suction Pressure (may appear to not be pumping)	EEV stuck open	Manually adjusting the EEV does not affect the superheat or the suction pressure. Low superheat and discharge pressure.	Go to EEV troubleshooting section.
	Leaking reversing valve if present (can cause compressor to overheat and trip internal overload)	Reversing valve is the same temper- ature on both ends of body, com- mon suction line is warm, compres- sor is running hot, low compressor discharge pressure.	Switch back and forth into cooling mode to try to free up valve. If it can't be freed, replace reversing valve.
	Faulty compressor, not pumping	Pressures change only slightly from static values when compressor is started.	Replace compressor.
Compressor frosting up	See Low Suction Pressure in this section.		
EEV frosting up	EEV stuck almost closed or partially blocked by foreign object	Manually adjusting the EEV does not affect the superheat or the suction pressure. High superheat and discharge pressure.	Go to EEV troubleshooting section.
Random high pressure trip (may not occur while on site)	Faulty indoor circulator relay	Using the PC APP, manually turn the ICR on/off several times and ensure the circulator(s) start and stop.	Replace relay.
Random manual high pressure trip (may not occur while on site)	Faulty compressor contactor	Points pitted or burned. Contactor sometimes sticks causing the compressor to run when it should be off.	Replace contactor.

Verification

OPERATION TROUBLESHOOTING - HEATING MODE Possible Cause

Fault

OPERATION TROUBLESHOOTING - COOLING MODE (HAC / HACW models only)					
Fault	Possible Cause	Verification	Recommended Action		
Heating instead of cooling	Zone thermostat intercon- nection or external control system not set up properly	Verify that there is 24VAC across O and C/CA of the aquastat strip on control board when cooling should be active.	Correct thermostat or external control system setup.		
	Faulty reversing valve so- lenoid coil or motorized actuator	Verify solenoid by removing it from the shaft while the unit is running. There should be a loud "whoosh" sound when it is removed. Or for motorized actuator, verify shaft ro- tates 90° when changing modes.	Replace solenoid or motorized actuator if faulty.		
	Faulty or stuck reversing valve	A click can be heard when the coil is energized but the unit continues to heat instead of cool, or shaft will not turn.	Replace reversing valve.		
High discharge pressure	Low or no outdoor loop flow	Delta T across the outdoor loop ports should be 8-12°F (4-7°C), or compare pressure drop to the ta- bles for the unit.	Determine the cause of the flow restriction and correct it. Verify pumps are working for ground loop systems. Verify well pump and water valve is working for ground water systems.		
	Outdoor loop entering liq- uid temperature too warm	Measure the entering liquid temperature. Most likely caused by undersized ground loop.	Verify the ground loop sizing. Increase the size of the ground loop if undersized.		
	Dirty or fouled outdoor loop coaxial heat ex- changer (typically for open loop, unlikely for ground loop)	Disconnect the water lines and check the inside of the pipes for scale deposits.	Backflush the heat exchanger with a calcium-removing cleaning solution.		
	Filter-dryer plugged	Feel each end of the filter-dryer; they should be the same tempera- ture. If there is a temperature dif- ference then it is plugged. Also causes low suction pressure.	Replace filter-dryer.		
	Unit is overcharged (after servicing)	High subcooling.	Remove 1/2 lb of refrigerant at a time and verify that the discharge pressure reduces. Or remove charge and weigh back in the amount listed on nameplate.		

OPERATION TROUBLESHOOTING - COOLING MODE (HAC / HACW models only)					
Fault	Possible Cause	Verification	Recommended Action		
High suction pressure (may appear to not be pump- ing)	EEV stuck open	Manually adjusting the EEV does not affect the superheat or the suction pressure. Low superheat and discharge pressure.	Go to EEV troubleshooting section.		
	Leaking reversing valve (can cause compressor to overheat and trip internal overload)	Reversing valve is the same temperature on both ends of body, common suction line is warm, compressor is running hot, low compressor discharge pressure.	Switch back and forth into cooling mode to try to free up valve. If it can't be freed, replace reversing valve.		
	Faulty compressor, not pumping	Pressures change only slightly from static values when compressor is started.	Replace compressor.		
Low suction pressure	Low indoor loop liquid flow	Check for high delta T with the PC APP. The EEV will be at a lower position than normal as well.	Verify pump is working and sized correctly. Check for restrictions in the circuit, e.g. valve partially closed.		
	Temperature setpoint(s) too low (if using BACnet or Signals control)	Use PC APP to verify that Indoor OUT is not less than the minimums listed in the Model Specific Information chapter.	Reduce setpoint(s).		
	EEV stuck almost closed or partially blocked by foreign object	Manually adjusting the EEV does not affect the superheat or the suction pressure. High superheat and high discharge pressure.	Go to EEV troubleshooting section.		
	TS1 temperature sensor not reading properly	If the sensor is reading low it will cause the superheat to appear high, which causes the EEV to continually close.	Verify EEV position is low compared to normal. Check temperature sensor, replace if necessary.		
	Filter-dryer plugged	Feel each end of the filter-dryer; they should be the same tempera- ture. If there is a temperature dif- ference then it is plugged. Also causes high discharge pressure.	Replace filter-dryer.		
	Low refrigerant charge	Indoor loop EWT and flow are good but suction is low. Check static refrigeration pressure of unit for a low value. Weigh out charge to ver- ify amount.	Locate the leak and repair it. Spray Nine, a sniffer, and dye are common methods of locating a leak.		
Compressor frosting up	See Low Suction Pressure in this section				
EEV frosting up	EEV stuck almost closed or partially blocked by foreign object	Manually adjusting the EEV does not affect the superheat or the suction pressure. High superheat and discharge pressure.	Go to EEV troubleshooting section.		
Random manu- al high pres- sure trip (may not occur while on site)	Faulty compressor contactor	Points pitted or burned. Contactor sometimes sticks causing the compressor to run when it should be off.	Replace contactor.		

EEV (Electronic Expansion Valve) TROUBLESHOOTING

Electronic expansion valves are a great advancement over TVX's, allowing more precise refrigerant control, but they do have a couple of limitations.

- a) EEV's receive commands to open or close from the control board, but they don't send any feedback to the control board to confirm that command has been received and acted upon. If they aren't reliably acted upon (due to pulses missed due to a wiring issue or EEV being mechanically stuck), the actual valve opening position won't match what the control board thinks it is. In extreme cases, the resulting repeated commands can cause the *apparent* valve position to go to **15**% (minimum) or **100**%, when the valve is actually in between.
- b) A restriction in the refrigeration circuit (particularly the liquid line, e.g. plugged filter-dryer) or shortage of refrigerant due to a leak can cause a similar issue. If the EEV opens to allow more refrigerant flow to lower the superheat but liquid refrigerant is not available at its inlet, the EEV will continue to open to attempt to let more refrigerant through and will work its way towards **100%** (full open). **High superheat** is also a symptom.

If there is low suction pressure and the EEV position is also low then the problem is generally not in the refrigeration system; check the water or airflow of the indoor or outdoor loop, whichever is currently the cold side (evaporator).

Tests to determine if an EEV is working

- Sound test: turn the power to the heat pump off and back on again. Or manually set the EEV to 25% and wait for it to stop, then set the EEV to "-1%". Both actions will cause the EEV to overdrive closed. You should hear the valve clicking and then the clicking should change and get louder when the valve reaches 0%. If there is no sound, then it is likely that the EEV is faulty or stuck.
- Using the PC APP, put the system in manual override mode. Manually adjust the EEV position by at least 25% either up or down and check to see that the suction pressure, discharge pressure and superheat react to the change. If there is no reaction, then it is likely that the EEV is faulty or stuck.
- Set the EEV back to AUTO and then turn the heating or cooling demand off (but leave power on). Once the demand
 is off, if the EEV is working then the discharge pressure should remain significantly higher than the suction pressure,
 i.e. the system will not equalize (since EEV's are closed when there is no demand). If the system does equalize it is
 likely that the EEV is not working and is partially open.

There are 3 possible causes for EEV problems: the control board is not working properly, the wire/cable is faulty, or the EEV is faulty.

The EEV can be checked electrically:

- RED to GREEN 75ohms
- WHITE to BLACK 75ohms

If this test fails, EEV is bad and should be replaced, but if it passes it still may be mechanically defective.

Check with a new EEV:

A further check that can be performed is to connect a new EEV and cable to the control board and visually check the EEV so see if it opens and closes by setting the position to 0 and 100%. If the new EEV works then the EEV in the unit or the cable needs to be replaced.

- 1) Connect a test EEV and test cable to the control board.
- 2) Set the EEV position to 0%.
- 3) Set the EEV position to 100% and then listen for clicking and watch to see if the pintle in the EEV moves open.
- 4) Set the EEV position to 0% and then listen for clicking and watch to see if the pintle in the EEV moves closed.
- 5) If the EEV does not move in one or both directions then the control board must be replaced.
- If the test EEV moves in both directions then then either the cable or the EEV in the unit is faulty.
- 7) Disconnect the test EEV from the test cable and connect it to the cable in the unit.
- 8) Repeat steps 2 to 4.
- 9) If the test EEV moves in both directions then the EEV in the unit is faulty and must be replaced.
- 10) If the test EEV does not move in one or both directions then the cable must be replaced.

Service Procedures

A2L-SPECIFIC WARNING / INSTRUCTION (W-series only)

Servicing a Unit with an A2L Refrigerant

1. Work procedure

Work should be undertaken under a controlled procedure, for example according to an ordered checklist. This may be in contrast to how refrigeration service work has normally been performed in the past, and is to minimize the risk of flammable gas being present while the work is being performed .

2. General work area

All maintenance staff and others working in the local area should be instructed on the nature of work being carried out. Work in confined spaces should be avoided.

3. Checking for presence of refrigerant

The area should be checked with a refrigerant detector prior to and during work, to ensure the technician is aware of potentially oxygen-deprived or flammable atmospheres.

Ensure that the leak detection equipment being used is suitable for use with A2L refrigerants, i.e. nonsparking, and adequately sealed or intrinsically safe. Under no circumstances should a torch or flame be used in the searching for refrigerant leaks.

Electronic leak detectors may be used but for A2L's they may need re-calibration in a refrigerant-free area. Leak detection equipment should be set at a percentage of the LFL (lower flammability limit) of the refrigerant (25% maximum). The worst-case LFL for R454b is 0.296 kg/m³ or 11.3% by volume.

Leak detection fluids are also suitable for use with most refrigerants but the use of detergents containing chlorine should be avoided as the chlorine can react with the refrigerant and corrode the copper pipe-work.

If a leak is suspected at any time, all naked flames should be removed/extinguished. If a leakage of refrigerant is found which requires brazing, all of the refrigerant should be first recovered from the system, or isolated (by means of shut-off valves) in a part of the system remote from the leak.

5. Presence of fire extinguisher

If any torch work (brazing) or refrigerant charging or removal is to be conducted, a dry powder or CO2 fire extinguisher should be ready at hand.

6. No ignition sources

Sources of ignition should be eliminated in the vicinity of work being carried out on a system containing an A2L refrigerant. Prior to work taking place, the area around the equipment should be surveyed to make sure that there are no flammable hazards or ignition risks. "No Smoking" signs should be displayed .

6. Ventilation of area

Ensure that the area is open to the outdoors or that it is adequately ventilated before breaking into the system or conducting any hot work. Ventilation should continue during the work, and can function to disperse any released refrigerant into a large space or preferably expel it into the outdoors.

7. Checks of the refrigeration equipment

- The refrigerant charge is in accordance with the size of the room within which the system is installed.
- The ventilation equipment (if any) is operating adequately and is not obstructed.
- The water/glycol/pool water loop should be checked for the presence of refrigerant, which might show up with a refrigerant detector or by over-pressure in that loop.
- Equipment markings continue to be visible and legible. Illegible signs or markings should be corrected.
- Refrigeration piping is installed in a position where it is unlikely to be exposed to corrosive substances, unless the piping is constructed of materials which are inherently resistant to corrosion from that substance.

A2L-SPECIFIC WARNING / INSTRUCTION (W-series only)

Servicing a Unit with an A2L Refrigerant (continued)

8. Checks to electrical devices & wiring

Where electrical components are being changed, they should be as specified by Maritime Geothermal Ltd.. If in doubt, consult technical support for assistance.

Electrical components should be inspected. If a fault is found, electrical supply should not be connected to the circuit until the fault is rectified. If the fault cannot be corrected immediately but it is necessary to continue operation, an adequate temporary solution should be used. This should be reported to the owner of the equipment so all parties are advised.

Initial safety checks should include:

- Capacitors are discharged this should be done in a safe manner to avoid possibility of sparking.
- No live electrical components and wiring are exposed while charging, recovering or purging the system.
- There is continuity of earth grounding/bonding.
- Check cabling for wear, corrosion, excessive pressure, vibration, sharp edges or any other adverse environmental effects. The check should take into account the effects of aging or continual vibration from sources such as compressors or fans.

9. Refrigerant removal and circuit evacuation

When breaking into the refrigerant circuit to make repairs - or for any other purpose - conventional procedures should be used. However, with flammable refrigerants it is important that best practice is followed:

- a) Safely remove refrigerant following local and national regulations, recovering into the correct recovery cylinders.
- b) Evacuate (vacuum). Ensure that the outlet of the vacuum pump is not close to any potential ignition sources and that ventilation is available.
- c) Purge the circuit by breaking the vacuum in the system with dry nitrogen and continuing to fill until the working pressure is achieved, then venting to atmosphere.
- d) Evacuate (vacuum) again, then vent to atmospheric pressure to enable work to take place.
- e) Open the circuit with torch, continuously flushing with dry nitrogen.

10. Charging

In addition to conventional charging procedures, the following should be observed.

- Ensure that contamination between different refrigerants does not occur when using charging equipment. Hoses should be as short as possible to minimize the amount of refrigerant contained in them.
- Cylinders should be kept in an appropriate position according to the instructions.
- Ensure that the refrigerating system is grounded prior to charging the system with refrigerant.
- Label the system when charging is complete (if final refrigerant charge is different from factory label).
- Extreme care should be taken not to over-charge the refrigerating system.

Prior to recharging the system, it should be pressure-tested with dry nitrogen. In addition, the system should be A2L leak-tested on completion of charging but prior to commissioning. A final A2L leak test should be carried out prior to leaving the site.

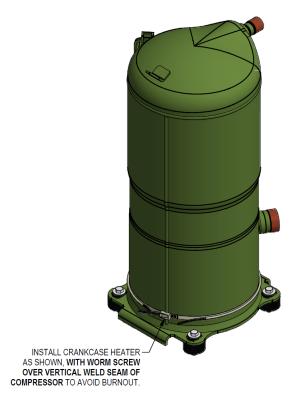
Pumpdown Procedure

- Place the unit in SERVICE mode via the PC App or LCD interface; this will open the EEVs and start the circulators (if circulators are controlled by the heat pump). **DO NOT** turn off electrical power at the breaker panel, since the heat exchangers **must have full water flow** during refrigerant recovery.
- Connect the refrigerant recovery unit to the heat pump's internal service ports via a refrigeration charging manifold and to a recovery tank as per the instructions in the recovery unit manual. Plan to dispose of refrigerant if there was a compressor burnout.
- 3. All refrigerant to water heat exchangers **must either have full flow or be completely drained** of fluid before recovery begins. If necessary, start circulation pumps via building control system. Failure to do so can freeze and rupture the heat exchanger, voiding its warranty. (Note that this does not apply to desuperheater coils.)
- 4. Ensure all hose connections are properly purged of air. Start the refrigerant recovery as per the instructions in the recovery unit manual.
- 5. Allow the recovery unit suction pressure to reach a vacuum. Once achieved, close the charging manifold valves. Shut down, purge and disconnect the recovery unit as per the instructions in its manual. Ensure the recovery tank valve is closed before disconnecting the hose to it.
- 6. Connect a nitrogen tank to the charging manifold and add nitrogen to the heat pump until a positive gauge pressure of 5-10 psig is reached. This prevents air from being sucked into the unit by the vacuum when the hoses are disconnected.

Turn off power to heat pump. The heat pump is now ready for repairs.

General Repair Procedure

- 1. Perform repairs to system.
 - Always ensure nitrogen is flowing through the system at the lowest flow rate that can be felt at the discharge during any brazing procedures to prevent soot buildup inside the pipes.
 - It is recommended to replace the liquid line filter-dryer any time the refrigeration system has been exposed to the atmosphere.
 - Place a wet rag around any valves being installed, as almost all valve types have non-metallic seats or seals
 that will be damaged by excessive heat, and aim the torch flame away from the valve body. Solder only one
 joint at a time and cool joints down in between.
- 2. Pressure test the system with nitrogen. It is recommended to check for leaks using leak detection spray, Spray Nine, or soapy water. Check at 10, 25, 50 and 100 psig. Allow the system to sit at 100 psig for at least an hour, then re-check. With a laptop connected, the PC App may be used to graph the nitrogen pressure (Graphs menu--> Refrigeration Pressure and Temperature Graphs) to make any downward trend due to a leak apparent. Be aware that changing room temperature can also cause upward or downward trends in nitrogen pressure.


Vacuuming & Charging Procedure

After completion of repairs and nitrogen pressure testing, the refrigeration circuit is ready for vacuuming.

- 1. Release the nitrogen pressure and connect the vacuum pump to the charging manifold. Start the vacuum pump and open the charging manifold valves. Vacuum until the vacuum gauge remains at less than 500 microns for at least 1 minute with the vacuum pump valve closed.
- 2. Close the charging manifold valves then shut off and disconnect the vacuum pump. Place a refrigerant tank with the proper refrigerant on a scale and connect it to the charging manifold. Purge the hose to the tank.
- 3. Weigh in the appropriate amount **and type** of refrigerant through the low pressure (suction) service port. Refer to the nameplate label on the unit for the proper refrigerant type and charge amount.
- 4. If the unit will not accept the entire charge, the remainder can be added through the low pressure service port after the unit has been restarted.

Compressor Replacement Procedure

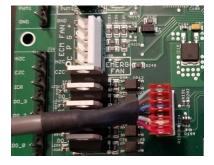
- 1. Pump down the unit as per the Pumpdown Procedure above. If there was a compressor burn out (motor failure), the refrigerant cannot be reused and must be disposed of according to local codes,
- 2. Disconnect piping. Remove crankcase heater, leaving electrically connected.
- 3. Replace the compressor. Replace the liquid line filter-dryer. Always ensure nitrogen is flowing through the system at the lowest flow rate that can be felt at the discharge during any brazing procedures to prevent soot buildup inside the pipes.
- 4. Vacuum the unit as per above procedure.
- 5. If there was a compressor burnout:
 - a) Charge the unit with **new** refrigerant and operate it for continuously for 2 hours. Pump down the unit and replace the filter-dryer. Vacuum the unit as per above procedure.
 - **b)** Charge the unit (refrigerant can be re-used) and operate it for 2-3 days. Perform an acid test. If it fails, pump down the unit and replace the filter-dryer.
 - c) Charge the unit (refrigerant can be re-used) and operate it for 2 weeks. Perform an acid test. If it fails, pump down the unit and replace the filter-dryer.
- 5. Charge the unit a final time. Unit should now be clean and repeated future burn-outs can be avoided.
- 6. Check crankcase heater to be sure it is operational and not shorted out. Procure a replacement if necessary. Install crankcase heater with worm screw over weld seam of compressor as shown.

Control Board Replacement Procedure

- 1. Turn the power off to the unit.
- 2. Take a picture of the control board and connectors for reference. The picture in Appendix A may also be helpful.
- 3. Carefully remove all green terminal strips on the left side, the right side and the bottom of the control board. They pull straight off the board, with no need to disconnect wires from their screw terminals. You may need to wiggle them from both ends for the 8 pin ones.

4. Remove the red six pin display board connector from the left side of the control board (marked DISPLAY on the

board).



- 5. Remove all connectors from the top of the control board. Each connector (or wire) should be marked already from the factory, e.g. HPS1, LP1, TS1, etc.. This matches the marking on the control board.
- 6. The control board is held in place at its four corners. Squeeze each standoff by hand or with needle nose pliers if necessary and carefully pull the corner of the board off of the standoff.
- 7. Once the control board has been removed, if there are any other standoffs left (they have the bottom snap cut off) remove them as well.
- 8. Carefully remove the new control board from the static bag it was shipped in. Place any cut off standoffs from the old board into the same locations on the new board.
- 9. Align the control board with the four corner standoffs in the electrical box then push on each corner until they snap in place.
- 10. Connect the top connectors to the control board. Refer to the Step 2 picture if necessary for proper locations. Note that the connector with the resistor (no cable) goes on CTS. Note that the connector to the left of CTS is marked HTS on older boards, and ODTS on newer boards.
- 11. Check each of the connectors from Step 10 to ensure they are properly aligned and that no pins are showing.
- 12. Connect the green terminal strips to the left side, right side and bottom of the control board. Refer to the **Step 2** picture if necessary for locations.
- 13. Turn the power on to the heat pump. Ensure the LCD display comes on. Note the firmware version. After EEV zeroing and Random Start countdown the display should begin alternating data.
- 14. If the replacement control board was pre-configured for this unit at the factory then the system is ready for operation. If it was not then use the PC App corresponding to the unit's firmware version to configure the unit. Refer to the **Tools --> Configuration** menu in the **PC APP** chapter.

LCD Interface (Display) Board Replacement Procedure

- 1. Turn the power off to the unit.
- Remove the display board cable connector from the control board.

3. Using a sharp utility knife with a long blade, slice each of the display board standoff heads off, taking care to not damage the lexan cover.

- 4. Pull the display board from the unit.
- 5. Remove the display board cable connector from the back of the display board.
- Place a new display board standoff into each of the four holes in the cabinet.
- 7. Remove the new display board from the static bag it was shipped in.
- 8. Connect one end of the display board cable to the back of the display board. Ensure the connector is properly aligned and that no pins are showing.
- 9. Place the display board in position and align the four standoffs into the four holes of the board.
- 10. Push on each corner of the board until each standoff snaps in place, while pushing on the front of the standoff to keep it from popping out of the cabinet hole.
- 11. Connect the other end of the display board cable to the control board, ensuring the connector is aligned properly and that no pins are showing.
- 12. Turn the power on to the unit and verify the display works.
- 13. Once the display begins to scroll data, test each of the buttons to ensure they work. Push the Arrow button to enter the Main Menu, then use the Up and Down to move through the list, then push the OK button to exit again. If any of the buttons seem hard to press, repeat Step 10 and then test the buttons again.

Decommissioning

When the heat pump has reached the end of its useful lifetime after many years of service, it must be decommissioned.

Before carrying out this procedure, it is essential that the technician is completely familiar with the system and all its connected equipment. It is good practice that all refrigerants are recovered safely. Prior to the task being carried out, an oil and refrigerant sample should be taken in case analysis is required prior to re-use of recovered refrigerant. It is essential that electrical power is available before the task is commenced.

- 1. Examine all parts of the system to become familiar with the equipment and its operation.
- 2. Isolate system electrically.
- 3. Before starting the procedure, ensure that:
 - a) equipment is available for handling refrigerant and refrigerant cylinders.
 - b) recovery equipment and cylinders conform to the appropriate standards.
 - c) all personal protective equipment is available and being used correctly.
 - d) personnel are appropriately qualified.
- 4. Pump down refrigerant system.
- 5. If solenoid valves are closed and can't be powered open or there are other obstructions in the refrigeration system, make a manifold so that refrigerant can be removed from various parts of the system.
- 6. Make sure that the cylinder is situated on a scale before recovery takes place.
- Start the recovery machine and operate in accordance with instructions.
- 8. Do not overfill cylinders (no more than 80 % volume liquid charge).
- 9. Do not exceed the maximum working pressure of the cylinder, even temporarily.
- 10. When all the refrigerant has been removed and the process completed, make sure that the cylinders and the equipment are removed from site promptly and all isolation valves on the equipment are closed off.
- 11. Recovered refrigerant should not be charged into another refrigerating system unless it has been checked and/or cleaned.

Equipment should be labelled stating that it has been de-commissioned and emptied of refrigerant. The label should be dated and signed.

Every effort should be made to check and RE-USE refrigerant and RECYCLE mechanical equipment.

Model Specific Information

Table 22 - Recommended Flow Rates								
MODEL	OUTDOOR LOOP		INDOOR LOOP (MAX. 130°F)		INDOOR LOOP (DHW to 140°F)			
IIIODEE -	gpm(US)	L/s	gpm(US)	L/s	gpm(US)	L/s		
W-100	28	1.8	28	1.8	-	-		
W-120	30	1.9	30	1.9	18	1.1		
W-140	34	2.1	34	2.1	20	1.3		
W-180	45	2.8	45	2.8	25	1.6		
W-235	60	3.8	60	3.8	35	2.2		

MODEL	OUTDOOR & INDOOR LOOPS				
0222	gpm(US)	L/s			
WH-100	28	1.8			
WH-120	30	1.9			
WH-140	34	2.1			
WH-180	45	2.8			
WH-235	60	3.8			

Table 23 - Heat Pump Holdup Volumes							
MODEL	OUTDOO	R LOOP	INDOOR LOOP (SINGLE WALL '-PP')		INDOOR LOOP (DOUBLE WALL '-PD')		
MODEL	US gal	L	US gal	L	US gal	L	
W/WH-100	3.05	11.5	3.30	12.5	-	-	
W/WH-120	2.04	7.74	2.04	7.74	2.38	9.01	
W/WH-140	2.29	8.66	2.29	8.66	2.67	10.1	
W/WH-180	2.96	11.2	2.96	11.2	3.43	13.0	
W/WH-235	3.70	14.0	3.70	14.0	4.39	16.6	

Table 24 - Refrigerant Charge								
MODEL	EL TYPE Ib kg		OIL					
W-100	R454b 17 7.7 POE		POE					
W-120	R454b	11	5.0	PVE-BVC32				
W-140	R454b	12.5	5.7	PVE-BVC32				
W-180	R454b	16.5	8.3	PVE-BVC32				
W-235	R454b	21.5	9.8	PVE-BVC32				

Note that in all cases the R454b charge per refrigeration circuit is below 'm2' in the UL/CSA 60335-2-40 standard.

MODEL	TYPE	lb	kg	OIL
WH-100	R513a	17	7.7	POE
WH-120	R513a	11	5.0	POE
WH-140	R513a 12.5		5.7	POE
WH-180	R513a	16.5	8.3	POE
WH-235	R513a	21.5	9.8	POE

- Oil capacity is marked on the compressor label.
- Refrigerant charge is subject to revision; actual charge is indicated on the unit nameplate.

Table 25 - Shipping Information							
MODEL	WEIGHT	DIMENSIONS in (cm)					
WIODEL	lb (kg)	b (kg)		Н			
W/WH-100	700 (318)	46 (117)	46 (117)	36 (92)			
W/WH-120	645 (293)	60 (152)	30 (76)	60 (152)			
W/WH-140	675 (307)	60 (152)	30 (76)	60 (152)			
W/WH-180	745 (339)	60 (152)	30 (76)	60 (152)			
W/WH-235	959 (436)	60 (152)	30 (76)	60 (152)			

Table 26a - W-SERIES Operating Temperature Limits							
Loop	Mode	Parameter	(°F)	(°C)	Note		
		Minimum ELT/EWT	50	10	0-10VDC modulating water valve required on indoor loop at temperatures < 80°F (27°C), or manual flow reduction at startup		
	HEATING (indoor is hot loop)	Maximum LLT/LWT	130	54			
Indoor Loop	(,	Maximum LLT/LWT	140	60	Domestic hot water (DHW) heating with double wall condenser option and reduced flow rate.		
Соор	COOLING	Minimum LWT	40	4	Indoor loop with water only (no antifreeze).		
	(reversing HAC	Minimum LLT	>	>	Indoor loop with antifreeze: depends on antifreeze type & %		
	units only, indoor is cold loop)	Maximum ELT	80	27	0-10VDC modulating water valve required on indoor loop above this temperature, or manual flow reduction at startup		
		Minimum LWT	37	3	For water loops without antifreeze, e.g. open loop systems		
	HEATING	Minimum LLT	>	>	Ground loop system: depends on antifreeze type and % settings.		
Outdoor Loop		Maximum ELT/EWT	80	27	0-10VDC modulating water valve required on outdoor loop above this temperature to limit suction pressure		
Гоор	COOLING (reversing HAC	Minimum ELT/EWT	50	10	0-10VDC modulating water valve required on outdoor loop at temperatures < 80°F (27°C) to keep head pressure up		
	units only, outdoor is hot loop)	Maximum LLT/LWT	130	54			

ELT: Entering Liquid Temperature (implies antifreeze present) LLT: Leaving Liquid Temperature (implies antifreeze present) EWT: Entering Water Temperature LWT: Leaving Water Temperature

Values in these tables are for rated liquid and water flows.

Table 26b - WH-SERIES Operating Temperature Limits								
Loop	Mode	Parameter	(°F)	(°C)	Note			
HEATING (indoor is hot loop)		Minimum EWT	70 - 110	21 - 43	Use formula (Outdoor EWT + 20°F) or (Outdoor EWT + 11°C). Lower temperatures require 0-10VDC modulating water valve, or manual flow reduction at startup.			
Indoor	Indoor	Maximum LWT	160	71				
Loop	COOLING	Minimum LWT	37	3	EWT should normally be 45°F or greater.			
ù	(reversing HAC units only, indoor is cold loop)	Maximum ELT	90	32	0-10VDC modulating water valve required on indoor loop above this temperature, or manual flow reduction at startup			
	LIEATING	Minimum LWT	37	3	EWT should normally be 45°F or greater.			
0.44	HEATING (outdoor is cold loop)	Maximum ELT	90	32	0-10VDC modulating water valve required on outdoor loop above this temperature to limit suction pressure			
(reversi units on	COOLING (reversing HAC units only, outdoor	Minimum EWT	70 - 110	21 - 43	Use formula (Outdoor EWT + 20°F) or (Outdoor EWT + 11°C). Lower temperatures require 0-10VDC modulating water valve.			
	is hot loop)	Maximum LLT/LWT	160	71				
Values in	Values in these tables are for rated liquid and water flows.							

0.7	8.0	
0.9	1.0	
1.1	1.1	
1.3	1.4	
1.5	1.6	
1.7	1.8	
1.9	2.1	
2.2	2.4	
0.8	8.0	
0.9	0.9	
1.0	1.1	
1.2	1.3	
1.4	1.5	
1.6	1.7	
1.8	1.9	
2.0	2.1	
2.2	2.4	
0.7	8.0	
1.0	1.1	
1.4	1.5	
1.8	1.9	
2.3	2.4	
2.8	3.0	
1.0	1.1	
1.3	1.4	
1.6	1.7	
2.0	2.1	
2.4	2.6	
2.9	3.0	
3.4	3.6	

Table 27:	
Pressure Drop Data	
(US UNITS)	

OUTDOOR LOOP & INDOOR LOOP W/ SINGLE WALL OPTION

		water 130°F	water 104°F	water 50°F	15% methanol 32°F	35% prop. glycol 32°F
	USgpm	psi	psi	psi	psi	psi
W/WH-100	16	1.8	1.8	1.9	2.2	2.9
	20	2.4	2.4	2.6	3.3	4.3
	24	3.6	3.6	3.9	4.6	6.0
	28	4.7	4.7	5.0	5.8	7.6
	32	6.3	6.3	6.5	7.3	9.6

	18	0.7	0.7	0.7	8.0	1.1
	20	0.8	8.0	0.9	1.0	1.3
W/WH-120	22	1.0	1.0	1.0	1.2	1.6
	24	1.1	1.2	1.2	1.4	1.8
	26	1.3	1.4	1.4	1.6	2.1
	28	1.5	1.6	1.6	1.8	2.4
	30	1.7	1.8	1.9	2.0	2.7
	22	2.0	2.0	2.4	2.2	2.4

	20	0.7	0.7	0.7	0.9	1.1
	22	0.8	0.8	0.8	1.0	1.3
	24	0.9	0.9	1.0	1.1	1.5
	26	1.1	1.1	1.1	1.3	1.7
W/WH-140	28	1.2	1.2	1.3	1.5	1.9
	30	1.4	1.4	1.5	1.7	2.2
	32	1.6	1.6	1.7	1.9	2.5
	34	1.8	1.8	1.9	2.1	2.7
	36	2.0	2.0	2.1	2.3	3.0

W/WH-180	25	0.6	0.6	0.7	0.8	1.0
	30	0.9	0.9	0.9	1.2	1.4
	35	1.2	1.2	1.2	1.5	1.9
	40	1.5	1.5	1.6	2.0	2.4
	45	1.9	1.9	2.0	2.4	2.9
	50	2.3	2.4	2.5	2.9	3.5

W/WH-235	35	0.8	0.9	0.9	1.2	1.3
	40	1.1	1.1	1.1	1.5	1.7
	45	1.4	1.4	1.4	1.9	2.1
	50	1.7	1.7	1.8	2.3	2.5
	55	2.0	2.0	2.1	2.7	3.0
	60	2.4	2.4	2.5	3.2	3.5
	65	2.8	2.8	2.9	3.7	4.0

INDOOR LOOP w/ DOUBLE WALL OPTION							
DHW 140°F DHW 50°F							
psi	psi						
-	-						
-	-						
-	-						

0.7	0.8
0.9	1.0
1.1	1.1
1.3	1.4
1.5	1.6
1.7	1.8
1.9	2.1
2.2	2.4

8.0	8.0
0.9	0.9
1.0	1.1
1.2	1.3
1.4	1.5
1.6	1.7
1.8	1.9
2.0	2.1
2.2	2.4

0.7	8.0
1.0	1.1
1.4	1.5
1.8	1.9
2.3	2.4
2.8	3.0

1.0	1.1
1.3	1.4
1.6	1.7
2.0	2.1
2.4	2.6
2.9	3.0
3.4	3.6

Table 28: Pressure Drop (METRIC UNIT	Data	OUTDOOR L	OOP & OP w/ SINGLE	INDOOR LOOP w/ DOUBLE WALL OPTION						
`	·	water 130°F	water 104°F	water 50°F	15% methanol 32°F	35% prop. glycol 32°F	DHW 140°F	DHW 50°F		
	L/s	kPa	kPa	kPa	kPa	kPa	kPa	kPa		
	1.0	12	12	13	15	20	-	-		
	1.3	17	17	18	23	30	-	-		
W/WH-100	1.5	25	25	27	32	41	-	-		
	1.8	32	32	34	40	52	-	-		
	2.0	43	43	45	50	66	-	-		
	1.1	8	5	5						
	1.3	6	6	6	7	9	6	7		
	1.4	7	7	7	8	11	7	8		
\A/\\A/\\ 400	1.5	8	8	8	9	13	9	9		
W/WH-120	1.6	9	9	10	11	15	10	11		
	1.8	11	11	11	12	17	12	13		
	1.9	12	12	13	14	19	13	14		
	2.0	14	14	15	16	21	15	16		
	1.3	5	5	5	6	8	5	5		
	1.4	5	5	6	7	9	6	6		
	1.5	6	6	7	8	10	7	8		
	1.6	7	7	8	9	12	8	9		
W/WH-140	1.8	8	9	9	10	13	9	10		
	1.9	10	10	10	12	15	11	12		
	2.0	11	11	12	13	17	12	13		
	2.1	12	12	13	15	19	14	15		
	2.3	14	14	14	16	21	15	16		
	1.6	4	4	4	6	7	5	6		
-	1.9	6	6	6	8	10	7	8		
\A/BA/II	2.2	8	8	9	11	13	10	10		
W/WH-180	2.5	10	11	11	13	16	12	13		
	2.8	13	13	14	17	20	16	17		
	3.2	16	16	17	20	24	19	20		
	2.2	6	6	6	8	9	7	7		
	2.5	7	8	8	11	12	9	10		
-	2.8	9	10	10	13	14	11	12		
W/WH-235	3.2	11	12	12	16	17	14	15		
-	3.5	14	14	15	19	21	17	18		
	3.8	16	17	17	22	24	20	21		
	4.1	19	19	20	26	28	23	25		

Standard Capacity Ratings - W-Series

Note: There are no Standard Capacity Ratings for the WH-Series; see WH Performance Tables.

Table 29 - W-SERIES Standard Capacity Ratings									
Standard Capacity Ratings - Ground Loop Heating* EWT 104°F (40°C), ELT 32°F (0°C) 60Hz									
Model	Nominal Size	Liquid Flow (Outdoor & Indoor)		Input Energy	Condenser Capacity		СОРн		
	tons	gpm	L/s	watts	Btu/hr	kW	W/W		
W-100	9	28	1.8	7,347	78,500	23	3.13		
W-120	10	30	1.9	7,900	91,000	27	3.38		
W-140	11.5	34	2.1	8,980	104,600	31	3.41		
W-180	15	48	3.0	11,783	136,200	40	3.39		
W-235	20	60	3.8	15,284	177,100	52	3.40		
* 35% Propylene	Glycol by Volum	ne Outdoor (C	Ground) Lo	op Fluid					

Standard Capacity Ratings - Ground Water Heating EWT 104°F (40°C), ELT 50°F (10°C) 60Hz									
Model	Nominal Size	Liquid Flow (Outdoor & Indoor)		Input Energy	Condenser Capacity		СОРн		
	tons	gpm	L/s	watts	Btu/hr	kW	W/W		
W-100	9	28	1.8	7,675	107,800	32	4.12		
W-120	10	30	1.9	8,127	125,000	37	4.51		
W-140	11.5	34	2.1	9,284	143,700	42	4.54		
W-180	15	48	3.0	12,156	187,300	55	4.52		
W-235	20	60	3.8	15,794	243,700	71	4.52		

Standard Ca	EWT 53.6°F (12°C), ELT 77°F (25°C)			60Hz				
Model	Nominal Size	Liquid Flow (Outdoor & Indoor)		Input Energy	Evaporator	Evaporator Capacity		EER
	tons	gpm	L/s	watts	Btu/hr	kW	W/W	Btu/hr/W
W-100	9	28	1.8	6,175	95,100	28	4.51	15.4
W-120	10	30	1.9	7,205	109,500	32	4.45	15.2
W-140	11.5	34	2.1	8,225	125,800	37	4.48	15.3
W-180	15	48	3.0	10,871	164,100	48	4.43	15.1
W-235	20	60	3.8	14,037	213,400	63	4.45	15.2
35% Propylene Glycol by Volume Outdoor (Ground) Loop Fluid								

Standard Cap	pacity Ratings	s - Ground	Water Co	oling	EWT 53.6°	F (12°C), EL	Г 59°F (15°C)	60Hz
Model	Nominal Size	Liquid (Outdoor		Input Energy	Evaporator	Capacity	COPc	EER
	tons	gpm	L/s	watts	Btu/hr	kW	W/W	Btu/hr/W
W-100	9	28	1.8	4,956	103,100	30	6.10	20.8
W-120	10	30	1.9	5,522	117,100	34	6.21	21.2
W-140	11.5	34	2.1	6,324	134,700	39	6.24	21.3
W-180	15	48	3.0	8,322	175,600	51	6.18	21.1
W-235	20	60	3.8	10,766	228,200	67	6.21	21.2

Performance Tables - W-Series (US UNITS)

W-100-H***-X-*S-CC R454b, 60 Hz, YA104K1E-TFD (460-3-60)

	EVA	PORATO	R LOOP	(35% Pro	opylene	Glycol)	ELECTI	RICAL		(CONDEN	SER LOC	OP (Wate	r)	
	ELT (°F)	Evap. Temp.	Flow (gpm)	LLT (°F)	Delta T (°F)	Heat Abs. (Btu/hr)	Compressor Current (A)*	Input Power (W)	EWT (°F)	Cond. Temp.	Flow (gpm)	LWT (°F)	Delta T (°F)	Heating (Btu/hr)	СОРн
1 1	25	13	28	22	-3.5	45,600	10.4	7,187		115	28	109	4.9	69,000	2.81
	30	18	28	26	-4.0	51,900	10.6	7,300		115	28	109	5.4	75,800	3.04
	35	22	28	31	-4.5	58,500	10.7	7,410		116	28	110	5.9	82,800	3.27
	40	27	28	35	-5.1	65,800	10.9	7,504		117	28	111	6.5	90,500	3.53
	45	31	28	39	-5.7	73,700	11.0	7,598	104	117	28	111	7.1	98,800	3.81
	50	36	28	44	-6.3	82,400	11.2	7,675	104	118	28	112	7.7	107,800	4.12
	55	40	28	48	-7.0	91,800	11.3	7,746		119	28	112	8.4	117,500	4.45
<u>o</u>	60	45	28	52	-7.8	101,800	11.4	7,820		119	28	113	9.2	127,900	4.79
	65	50	28	56	-8.6	112,900	11.6	7,879		120	28	114	10.0	139,200	5.18
HEATING	70	54	28	61	-9.5	124,600	11.7	7,944		121	28	115	10.8	151,200	5.58
뿔	25	14	28	22	-3.2	41,400	11.2	7,923	115.2	125	28		4.8	67,300	2.49
	30	18	28	26	-3.6	47,300	11.3	7,997	114.7	125	28		5.3	73,600	2.70
	35	23	28	31	-4.1	53,800	11.4	8,062	114.2	125	28		5.8	80,300	2.92
	40	27	28	35	-4.7	60,900	11.6	8,123	113.7	125	28		6.3	87,700	3.16
	45	32	28	40	-5.3	68,700	11.7	8,178	113.1	125	28	120	6.9	95,800	3.43
	50	36	28	44	-5.9	77,200	11.8	8,226	112.5	126	28	120	7.5	104,500	3.72
	55	41	28	48	-6.6	86,400	11.9	8,270	111.8	126	28		8.2	113,900	4.04
	60	45	28	53	-7.4	96,600	12.0	8,310	111.1	126	28		8.9	124,300	4.38
	65	50	28	57	-8.2	107,600	12.0	8,344	110.3	126	28		9.7	135,500	4.76
	70	54	28	61	-9.1	119,500	12.1	8,375	109.4	126	28		10.6	147,600	5.17
 							<u> </u>								
DHW							- coaxial o					140			
						Wit	hout doub	ie wali Op	Juon			(DHW)			
1															
1															
Щ															

		EVAF	ORATOR	R LOOP	(Water)		ELECTI	RICAL		CONDE	ISER LO	OP (35%	Propyler	ne Glycol)	
	ELT (°F)	Evap. Temp.	Flow (gpm)	LLT (°F)	Delta T (°F)	Cooling (Btu/hr)	Compressor Current (A)*	Input Power (W)	EWT (°F)	Cond. Temp.	Flow (gpm)	LWT (°F)	Delta T (°F)	Heat Rej. (Btu/hr)	EER
		35	28	46	-7.7	107,200	7.5	4,349	50	73	28	59	9.3	121,000	24.6
		35	28	46	-7.5	105,100	7.8	4,691	55	78	28	64	9.2	120,100	22.4
ING		36	28	46	-7.4	103,000	8.1	5,020	60	83	28	69	9.1	119,100	20.5
		36	28	46	-7.2	100,700	8.5	5,356	65	88	28	74	9.0	118,000	18.8
COOL	5 4	37	28	47	-7.1	98,400	8.8	5,693	70	94	28	79	8.9	116,800	17.3
ö	54	37	28	47	-6.9	96,100	9.2	6,032	75	99	28	84	8.8	115,700	15.9
		38	28	47	-6.7	93,600	9.6	6,389	80	104	28	89	8.7	114,400	14.7
		38	28	47	-6.5	91,100	10.0	6,765	85	109	28	94	8.6	113,200	13.5
		39	28	47	-6.4	88,600	10.4	7,153	90	114	28	99	8.5	112,000	12.4
		39	28	47	-6.2	85,800	10.9	7,574	95	119	28	103	8.4	110,700	11.3

Performance Tables - W-Series (METRIC UNITS)

W-100-H***-X-*S-CC R454b, 60 Hz, YA104K1E-TFD (460-3-60)

	EVA	PORATO	R LOOP	(35% Pr	opylene	Glycol)	ELECTI	RICAL		(CONDEN	SER LOC	OP (Water)	
	ELT (°C)	Evap. Temp.	Flow (L/s)	LLT (°C)	Delta T (°C)	Heat Abs. (kW)	Compressor Current (A)*	Input Power (W)	EWT (°C)	Cond. Temp.	Flow (L/s)	LWT (°C)	Delta T (°C)	Heating (kW)	СОРн
	-3.9	-10.6	1.8	-5.8	-1.9	13.4	10.4	7,187		45.9	1.8	42.7	2.7	20.2	2.81
ľ	-1.1	-8.0	1.8	-3.3	-2.2	15.2	10.6	7,300		46.3	1.8	43.0	3.0	22.2	3.04
	1.7	-5.5	1.8	-0.8	-2.5	17.1	10.7	7,410		46.7	1.8	43.3	3.3	24.3	3.27
	4.4	-2.9	1.8	1.6	-2.8	19.3	10.9	7,504		47.0	1.8	43.6	3.6	26.5	3.53
	7.2	-0.4	1.8	4.0	-3.2	21.6	11.0	7,598	40	47.4	1.8	43.9	3.9	29.0	3.81
	10.0	2.1	1.8	6.5	-3.5	24.1	11.2	7,675	40	47.7	1.8	44.3	4.3	31.6	4.12
	12.8	4.7	1.8	8.9	-3.9	26.9	11.3	7,746		48.1	1.8	44.7	4.7	34.4	4.45
O	15.6	7.2	1.8	11.3	-4.3	29.8	11.4	7,820		48.4	1.8	45.1	5.1	37.5	4.79
	18.3	9.7	1.8	13.5	-4.8	33.1	11.6	7,879		48.8	1.8	45.6	5.6	40.8	5.18
HEATING	21.1	12.2	1.8	15.8	-5.3	36.5	11.7	7,944		49.2	1.8	46.0	6.0	44.3	5.58
뿔	-3.9	-10.1	1.8	-5.7	-1.8	12.1	11.2	7,923	46.2	51.4	1.8		2.7	19.7	2.49
	-1.1	-7.6	1.8	-3.1	-2.0	13.9	11.3	7,997	45.9	51.6	1.8		2.9	21.6	2.70
	1.7	-5.1	1.8	-0.6	-2.3	15.8	11.4	8,062	45.7	51.7	1.8		3.2	23.5	2.92
	4.4	-2.6	1.8	1.8	-2.6	17.8	11.6	8,123	45.4	51.8	1.8		3.5	25.7	3.16
	7.2	-0.1	1.8	4.3	-2.9	20.1	11.7	8,178	45.1	51.9	1.8	49	3.8	28.1	3.43
	10.0	2.4	1.8	6.7	-3.3	22.6	11.8	8,226	44.7	52.0	1.8		4.2	30.6	3.72
	12.8	4.9	1.8	9.1	-3.7	25.3	11.9	8,270	44.3	52.1	1.8		4.6	33.4	4.04
	15.6	7.4	1.8	11.5	-4.1	28.3	12.0	8,310	43.9	52.2	1.8		4.9	36.4	4.38
	18.3	9.9	1.8	13.7	-4.6	31.5	12.0	8,344	43.5	52.3	1.8		5.4	39.7	4.76
	21.1	12.4	1.8	16.0	-5.1	35.0	12.1	8,375	43.0	52.4	1.8		5.9	43.3	5.17
DHW							- coaxial o					60			
百						wit	hout doub	le wall op	otion			(DHW)			
												-			
												-			

		EVAP	ORATOR	R LOOP	(Water)		ELECT	RICAL		CONDE	ISER LO	OP (35%	Propyler	e Glycol)	
	ELT (°C)	Evap. Temp.	Flow (L/s)	LLT (°C)	Delta T (°C)	Cooling (kW)	Compressor Current (A)*	Input Power (W)	EWT (°C)	Cond. Temp.	Flow (L/s)	LWT (°C)	Delta T (°C)	Heat Rej. (kW)	COPc
		1.5	1.8	7.7	-4.3	31.4	7.5	4,349	10.0	22.7	1.8	15.2	5.2	35.5	7.21
		1.8	1.8	7.8	-4.2	30.8	7.8	4,691	12.8	25.6	1.8	17.9	5.1	35.2	6.56
ING		2.1	1.8	7.9	-4.1	30.2	8.1	5,020	15.6	28.4	1.8	20.7	5.1	34.9	6.01
		2.3	1.8	8.0	-4.0	29.5	8.5	5,356	18.3	31.3	1.8	23.3	5.0	34.6	5.51
8	10	2.6	1.8	8.1	-3.9	28.8	8.8	5,693	21.1	34.2	1.8	26.0	4.9	34.2	5.07
S	12	2.9	1.8	8.2	-3.8	28.2	9.2	6,032	23.9	37.0	1.8	28.8	4.9	33.9	4.66
i I		3.2	1.8	8.3	-3.7	27.4	9.6	6,389	26.7	39.9	1.8	31.5	4.8	33.5	4.31
		3.4	1.8	8.4	-3.6	26.7	10.0	6,765	29.4	42.8	1.8	34.2	4.8	33.2	3.96
		3.7	1.8	8.4	-3.6	26.0	10.4	7,153	32.2	45.6	1.8	36.9	4.7	32.8	3.63
		4.0	1.8	8.6	-3.4	25.1	10.9	7,574	35.0	48.5	1.8	39.7	4.7	32.4	3.31

Performance Tables - W-Series (US UNITS)

W-120-H**-X-*S-P* R454b, 60 Hz, GSD60120VL (460-3-60)

	EVA	PORATO	R LOOP	(35% Pro	opylene (Glycol)	ELECTI	RICAL		(CONDEN	SER LOC	OP (Wate	r)	
	ELT (°F)	Evap. Temp.	Flow (gpm)	LLT (°F)	Delta T (°F)	Heat Abs. (Btu/hr)	Compressor Current (A)*	Input Power (W)	EWT (°F)	Cond. Temp.	Flow (gpm)	LWT (°F)	Delta T (°F)	Heating (Btu/hr)	СОРн
	25	14	30	21	-3.9	54,000	11.4	7,842		113	30	109	5.4	80,400	3.00
	30	19	30	26	-4.4	61,300	11.4	7,881		114	30	110	5.9	87,800	3.27
	35	24	30	30	- 5.0	69,200	11.4	7,927		115	30	110	6.4	95,900	3.55
	40	28	30	34	- 5.6	77,900	11.5	7,981		115	30	111	7.0	104,800	3.85
	45	33	30	39	-6.3	87,300	11.6	8,047	104	116	30	112	7.7	114,400	4.17
	50	38	30	43	-7.0	97,600	11.7	8,128	104	117	30	112	8.4	125,000	4.51
	55	42	30	47	-7.8	108,500	11.8	8,224		118	30	113	9.1	136,300	4.86
<u>©</u>	60	47	30	51	-8.6	120,500	11.9	8,342		118	30	114	10.0	148,700	5.22
	65	52	30	55	-9.5	133,500	12.1	8,481		119	30	115	10.9	162,200	5.61
HEATING	70	57	30	59	-10.5	147,500	12.2	8,646		120	30	116	11.8	176,700	5.99
뿔	25	15	30	21	-3.6	49,300	12.2	8,599	115	124	30		5.3	78,300	2.67
	30	19	30	26	-4.0	56,300	12.2	8,647	114	124	30		5.7	85,400	2.89
	35	24	30	30	-4.6	63,900	12.3	8,705	114	124	30		6.3	93,200	3.14
	40	29	30	35	-5.2	72,500	12.4	8,788	113	124	30		6.9	102,100	3.40
	45	33	30	39	-5.9	81,700	12.5	8,875	113	124	30	120	7.5	111,600	3.69
	50	38	30	43	-6.6	91,900	12.7	8,982	112	125	30	120	8.2	122,200	3.99
	55	43	30	48	-7.4	102,900	12.9	9,110	111	125	30		9.0	133,700	4.30
	60	48	30	52	-8.2	115,000	13.1	9,262	110	125	30		9.8	146,300	4.63
	65	52	30	56	-9.1	128,000	13.3	9,451	109	125	30		10.8	160,000	4.96
	70	57	30	60	-10.1	142,100	13.6	9,659	108	126	30		11.8	174,800	5.30
	25	12	30	22	-3.5	49,200	15.8	11,401	130	137	18		9.9	87,700	2.25
	30	17	30	26	-4.0	55,000	15.5	11,115	130	138	18		10.4	92,600	2.44
	35	22	30	31	-4.4	61,400	15.1	10,847	129	138	18		11.1	98,100	2.65
	40	26	30	35	-4.9	68,100	14.8	10,609	128	138	18		11.7	104,000	2.87
DHW	45	31	30	40	-5.4	75,400	14.5	10,379	128	138	18	140	12.5	110,500	3.12
占	50	36	30	44	-6.0	83,300	14.2	10,171	127	139	18	(DHW)	13.3	117,700	3.39
	55	41	30	48	-6.6	91,800	13.9	9,984	126	139	18		14.2	125,600	3.69
	60	46	30	53	-7.2	101,000	13.6	9,820	125	139	18		15.1	134,200	4.01
	65	51	30	57	-7.9	110,900	13.4	9,692	124	139	18		16.2	143,700	4.35
	70	56	30	61	-8.7	121,500	13.3	9,572	123	139	18		17.4	153,900	4.71

		EVAF	ORATOR	R LOOP	(Water)		ELECTI	RICAL		CONDE	ISER LO	OP (35%	Propyler	ne Glycol)	
	ELT (°F)	Evap. Temp.	Flow (gpm)	LLT (°F)	Delta T (°F)	Cooling (Btu/hr)	Compressor Current (A)*	Input Power (W)	EWT (°F)	Cond. Temp.	Flow (gpm)	LWT (°F)	Delta T (°F)	Heat Rej. (Btu/hr)	EER
		34	30	46	-8.0	120,600	7.9	4,883	50	73	30	60	9.8	136,900	24.7
		35	30	46	-7.9	118,800	8.3	5,223	55	78	30	65	9.7	136,300	22.7
ING		36	30	46	-7.8	116,800	8.8	5,603	60	83	30	70	9.7	135,600	20.8
		36	30	46	-7.7	114,800	9.3	6,019	65	88	30	75	9.6	135,000	19.1
COOL	5 4	37	30	46	-7.5	112,600	9.9	6,483	70	94	30	80	9.6	134,400	17.4
ö	54	37	30	46	-7.4	110,500	10.5	6,987	75	99	30	85	9.5	134,000	15.8
		38	30	46	-7.2	108,000	11.2	7,547	80	104	30	90	9.5	133,400	14.3
		38	30	47	-7.0	105,600	11.9	8,155	85	109	30	95	9.5	133,100	12.9
		39	30	47	-6.9	102,800	12.7	8,828	90	115	30	99	9.4	132,600	11.6
		39	30	47	-6.7	100,100	13.7	9,556	95	120	30	104	9.4	132,400	10.5

Performance Tables - W-Series (METRIC UNITS)

W-120-H**-X-*S-P*

R454b, 60 Hz, GSD60120VL (460-3-60)

	EVA	PORATO	R LOOP	(35% Pro	opylene	Glycol)	ELECTI	RICAL		(CONDEN	SER LOC	P (Water)	
	ELT (°C)	Evap. Temp.	Flow (L/s)	LLT (°C)	Delta T (°C)	Heat Abs. (kW)	Compressor Current (A)*	Input Power (W)	EWT (°C)	Cond. Temp.	Flow (L/s)	LWT (°C)	Delta T (°C)	Heating (kW)	СОРн
	-3.9	-9.8	1.9	-6.1	-2.2	15.8	11.4	7,842		45.2	1.9	43.0	3.0	23.6	3.00
ľ	-1.1	-7.2	1.9	-3.5	-2.4	18.0	11.4	7,881		45.6	1.9	43.3	3.3	25.7	3.27
	1.7	-4.6	1.9	-1.1	-2.8	20.3	11.4	7,927		45.9	1.9	43.6	3.6	28.1	3.55
	4.4	-2.0	1.9	1.3	-3.1	22.8	11.5	7,981		46.3	1.9	43.9	3.9	30.7	3.85
	7.2	0.6	1.9	3.7	-3.5	25.6	11.6	8,047	40	46.7	1.9	44.3	4.3	33.5	4.17
	10.0	3.2	1.9	6.1	-3.9	28.6	11.7	8,128	40	47.1	1.9	44.7	4.7	36.6	4.51
	12.7	5.8	1.9	8.4	-4.3	31.8	11.8	8,224		47.5	1.9	45.1	5.1	40.0	4.86
O	15.5	8.4	1.9	10.7	-4.8	35.3	11.9	8,342		47.9	1.9	45.6	5.6	43.6	5.22
Z	18.3	11.0	1.9	13.0	-5.3	39.1	12.1	8,481		48.3	1.9	46.1	6.1	47.5	5.61
HEATING	21.1	13.6	1.9	15.3	-5.8	43.2	12.2	8,646		48.7	1.9	46.6	6.6	51.8	5.99
뽀	-3.9	-9.7	1.9	-5.9	-2.0	14.4	12.2	8,599	45.9	50.8	1.9		2.9	22.9	2.67
	-1.1	-7.1	1.9	-3.3	-2.2	16.5	12.2	8,647	45.7	50.9	1.9		3.2	25.0	2.89
	1.7	-4.5	1.9	-0.9	-2.6	18.7	12.3	8,705	45.4	51.1	1.9		3.5	27.3	3.14
	4.4	-1.8	1.9	1.5	-2.9	21.2	12.4	8,788	45.1	51.2	1.9		3.8	29.9	3.40
	7.2	8.0	1.9	3.9	-3.3	23.9	12.5	8,875	44.7	51.3	1.9	49	4.2	32.7	3.69
	10.0	3.4	1.9	6.3	-3.7	26.9	12.7	8,982	44.3	51.4	1.9	49	4.6	35.8	3.99
	12.8	6.0	1.9	8.7	-4.1	30.2	12.9	9,110	43.9	51.6	1.9		5.0	39.2	4.30
	15.6	8.6	1.9	11.0	-4.6	33.7	13.1	9,262	43.4	51.7	1.9		5.4	42.9	4.63
	18.3	11.2	1.9	13.2	-5.1	37.5	13.3	9,451	42.9	51.8	1.9		6.0	46.9	4.96
	21.1	13.8	1.9	15.5	-5.6	41.7	13.6	9,659	42.3	51.9	1.9		6.6	51.2	5.30
	-3.9	-11.3	1.9	-5.8	-1.9	14.4	15.8	11,401	54.5	58.6	1.1		5.5	25.7	2.25
	-1.1	-8.6	1.9	-3.3	-2.2	16.1	15.5	11,115	54.2	58.7	1.1		5.8	27.1	2.44
	1.7	-5.8	1.9	-0.7	-2.4	18.0	15.1	10,847	53.8	58.8	1.1		6.2	28.8	2.65
	4.4	-3.1	1.9	1.7	-2.7	20.0	14.8	10,609	53.5	58.9	1.1		6.5	30.5	2.87
DHW	7.2	-0.4	1.9	4.2	-3.0	22.1	14.5	10,379	53.1	59.1	1.1	60	6.9	32.4	3.12
占	10.0	2.3	1.9	6.7	-3.3	24.4	14.2	10,171	52.6	59.2	1.1	(DHW)	7.4	34.5	3.39
	12.8	5.1	1.9	9.1	-3.7	26.9	13.9	9,984	52.1	59.3	1.1		7.9	36.8	3.69
	15.6	7.8	1.9	11.6	-4.0	29.6	13.6	9,820	51.6	59.4	1.1		8.4	39.3	4.01
	18.3	10.6	1.9	13.9	-4.4	32.5	13.4	9,692	51.0	59.6	1.1		9.0	42.1	4.35
	21.1	13.3	1.9	16.3	-4.8	35.6	13.3	9,572	50.3	59.7	1.1		9.7	45.1	4.71

		EVAP	ORATOR	R LOOP	(Water)		ELECTI	RICAL		CONDE	ISER LO	OP (35%	Propylen	e Glycol)	
	ELT (°C)	Evap. Temp.	Flow (L/s)	LLT (°C)	Delta T (°C)	Cooling (kW)	Compressor Current (A)*	Input Power (W)	EWT (°C)	Cond. Temp.	Flow (L/s)	LWT (°C)	Delta T (°C)	Heat Rej. (kW)	COPc
		1	1.9	7.6	-4.4	35.3	7.9	4,883	10.0	23	1.9	15.4	5.4	40.1	7.24
		2	1.9	7.6	-4.4	34.8	8.3	5,223	12.8	25	1.9	18.2	5.4	40.0	6.65
ING		2	1.9	7.7	-4.3	34.2	8.8	5,603	15.6	28	1.9	21.0	5.4	39.7	6.10
		2	1.9	7.7	-4.3	33.6	9.3	6,019	18.3	31	1.9	23.6	5.3	39.6	5.60
000	12	3	1.9	7.8	-4.2	33.0	9.9	6,483	21.1	34	1.9	26.4	5.3	39.4	5.10
S	12	3	1.9	7.9	-4.1	32.4	10.5	6,987	23.9	37	1.9	29.2	5.3	39.3	4.63
i I		3	1.9	8.0	-4.0	31.7	11.2	7,547	26.7	40	1.9	32.0	5.3	39.1	4.19
		4	1.9	8.1	-3.9	31.0	11.9	8,155	29.4	43	1.9	34.7	5.3	39.0	3.78
		4	1.9	8.2	-3.8	30.1	12.7	8,828	32.2	46	1.9	37.4	5.2	38.9	3.40
		4	1.9	8.3	-3.7	29.3	13.7	9,556	35.0	49	1.9	40.2	5.2	38.8	3.08

Performance Tables - W-Series (US UNITS)

W-140-H**-X-*S-P* R454b, 60 Hz, GSD60137VL (460-3-60)

	EVA	PORATO	R LOOP	(35% Pro	opylene (Glycol)	ELECTI	RICAL		(CONDEN	SER LOC	OP (Water	r)	
	ELT (°F)	Evap. Temp.	Flow (gpm)	LLT (°F)	Delta T (°F)	Heat Abs. (Btu/hr)	Compressor Current (A)*	Input Power (W)	EWT (°F)	Cond. Temp.	Flow (gpm)	LWT (°F)	Delta T (°F)	Heating (Btu/hr)	СОРн
	25	15	34	21	-4.0	62,400	12.6	8,893		114	34	110	5.5	92,300	3.04
	30	19	34	26	-4.5	70,800	12.7	8,951		114	34	110	6.0	100,900	3.30
	35	24	34	30	- 5.1	80,000	12.8	9,020		115	34	111	6.5	110,300	3.58
	40	29	34	34	- 5.7	89,900	12.9	9,097		116	34	111	7.1	120,500	3.88
	45	33	34	39	-6.4	100,700	13.0	9,176	104	116	34	112	7.8	131,600	4.20
	50	38	34	43	-7.1	112,400	13.1	9,284	104	117	34	113	8.5	143,700	4.54
	55	43	34	47	-7.9	124,800	13.3	9,413		118	34	113	9.3	156,500	4.87
<u>o</u>	60	47	34	51	-8.7	138,600	13.5	9,563		118	34	114	10.1	170,900	5.24
	65	52	34	55	-9.7	153,400	13.7	9,758		119	34	115	11.0	186,300	5.60
HEATING	70	57	34	59	-10.6	169,300	14.0	9,992		120	34	116	12.0	203,000	5.95
[뿔]	25	15	34	21	-3.6	56,800	13.7	9,805	115	124	34		5.3	89,800	2.68
	30	20	34	26	-4.1	64,900	13.8	9,882	114	124	34		5.8	98,200	2.91
	35	24	34	30	-4.7	73,900	13.9	9,950	114	124	34		6.4	107,400	3.16
	40	29	34	35	-5.3	83,700	14.1	10,039	113	124	34		7.0	117,500	3.43
	45	34	34	39	-6.0	94,400	14.2	10,130	112	125	34	120	7.6	128,500	3.72
	50	38	34	43	-6.7	105,900	14.3	10,253	112	125	34	120	8.3	140,500	4.02
	55	43	34	48	-7.5	118,500	14.5	10,390	111	125	34		9.1	153,600	4.33
	60	48	34	52	-8.3	132,100	14.8	10,571	110	125	34		10.0	167,800	4.65
	65	53	34	56	-9.3	147,000	15.0	10,778	109	126	34		10.9	183,400	4.99
	70	57	34	60	-10.2	162,900	15.4	11,040	108	126	34		11.9	200,200	5.31
	25	12	34	21	-3.6	56,700	17.9	12,899	130	138	20		10.2	100,300	2.28
	30	17	34	26	-4.0	63,700	17.5	12,616	129	138	20		10.8	106,300	2.47
	35	22	34	31	-4.5	71,100	17.1	12,328	129	138	20		11.4	112,700	2.68
	40	27	34	35	-5.0	78,800	16.7	12,058	128	138	20		12.1	119,500	2.90
DHW	45	32	34	40	-5.5	87,200	16.4	11,781	127	139	20	140	12.9	127,000	3.16
古	50	37	34	44	-6.1	95,900	16.0	11,519	126	139	20	(DHW)	13.7	134,800	3.43
	55	41	34	48	-6.6	105,100	15.6	11,273	126	139	20		14.5	143,200	3.72
	60	46	34	53	-7.3	115,200	15.3	11,054	125	139	20		15.5	152,600	4.05
	65	51	34	57	-7.9	125,600	15.1	10,870	124	139	20		16.5	162,300	4.38
	70	56	34	61	-8.6	136,900	14.8	10,706	122	140	20		17.6	173,100	4.74

		EVAF	ORATOR	R LOOP	(Water)		ELECT	RICAL		CONDE	NSER LO	OP (35%	Propyler	e Glycol)	
	ELT (°F)	Evap. Temp.	Flow (gpm)	LLT (°F)	Delta T (°F)	Cooling (Btu/hr)	Compressor Current (A)*	Input Power (W)	EWT (°F)	Cond. Temp.	Flow (gpm)	LWT (°F)	Delta T (°F)	Heat Rej. (Btu/hr)	EER
		35	34	45	-8.2	139,400	8.6	5,611	50	72	34	60	10.0	158,100	24.8
		35	34	46	-8.0	136,900	9.1	5,991	55	78	34	65	9.9	156,900	22.9
NG		36	34	46	-7.9	134,200	9.6	6,414	60	83	34	70	9.8	155,600	20.9
		36	34	46	-7.8	131,900	10.2	6,881	65	88	34	75	9.8	154,900	19.2
COOL	5 4	37	34	46	-7.6	129,200	10.9	7,403	70	93	34	80	9.7	154,000	17.5
ö	54	37	34	46	-7.5	126,800	11.6	7,977	75	99	34	85	9.7	153,600	15.9
		38	34	46	-7.3	124,200	12.4	8,617	80	104	34	90	9.6	153,200	14.4
		38	34	46	-7.2	121,700	13.3	9,319	85	109	34	95	9.6	153,100	13.1
		39	34	47	-7.0	118,900	14.4	10,100	90	114	34	100	9.6	153,000	11.8
		40	34	47	-6.8	116,200	15.5	10,953	95	120	34	105	9.6	153,200	10.6

Performance Tables - W-Series (METRIC UNITS)

W-140-H-X-*S-P*** R454b, 60 Hz, GSD60137VL (460-3-60)

	EVA	PORATO	R LOOP	(35% Pr	opylene	Glycol)	ELECT	RICAL		(CONDEN	SER LOC	OP (Water	7)	
	ELT (°C)	Evap. Temp.	Flow (L/s)	LLT (°C)	Delta T (°C)	Heat Abs. (kW)	Compressor Current (A)*	Input Power (W)	EWT (°C)	Cond. Temp.	Flow (L/s)	LWT (°C)	Delta T (°C)	Heating (kW)	СОРн
	-3.9	-9.7	2.1	-6.1	-2.2	18.3	12.6	8,893		45.3	2.1	43.1	3.1	27.1	3.04
	-1.1	-7.1	2.1	-3.6	-2.5	20.7	12.7	8,951		45.7	2.1	43.3	3.3	29.6	3.30
	1.7	-4.4	2.1	-1.1	-2.8	23.4	12.8	9,020		46.1	2.1	43.6	3.6	32.3	3.58
	4.4	-1.8	2.1	1.2	-3.2	26.3	12.9	9,097		46.4	2.1	43.9	3.9	35.3	3.88
	7.2	0.8	2.1	3.6	-3.6	29.5	13.0	9,176	40	46.8	2.1	44.3	4.3	38.6	4.20
	10.0	3.4	2.1	6.1	-3.9	32.9	13.1	9,284	40	47.2	2.1	44.7	4.7	42.1	4.54
	12.7	5.9	2.1	8.3	-4.4	36.6	13.3	9,413		47.6	2.1	45.2	5.2	45.9	4.87
U	15.5	8.6	2.1	10.7	-4.8	40.6	13.5	9,563		47.9	2.1	45.6	5.6	50.1	5.24
ΙZ	18.3	11.2	2.1	12.9	-5.4	45.0	13.7	9,758		48.3	2.1	46.1	6.1	54.6	5.60
HEATING	21.1	13.8	2.1	15.2	-5.9	49.6	14.0	9,992		48.7	2.1	46.7	6.7	59.5	5.95
H 뽀	-3.9	-9.6	2.1	-5.9	-2.0	16.6	13.7	9,805	45.9	50.8	2.1		2.9	26.3	2.68
	-1.1	-6.9	2.1	-3.4	-2.3	19.0	13.8	9,882	45.7	51.0	2.1		3.2	28.8	2.91
1	1.7	-4.3	2.1	-0.9	-2.6	21.7	13.9	9,950	45.3	51.1	2.1		3.6	31.5	3.16
	4.4	-1.7	2.1	1.5	-2.9	24.5	14.1	10,039	45.0	51.3	2.1		3.9	34.4	3.43
1	7.2	0.9	2.1	3.9	-3.3	27.7	14.2	10,130	44.7	51.4	2.1	49	4.2	37.7	3.72
1	10.0	3.6	2.1	6.3	-3.7	31.0	14.3	10,253	44.3	51.6	2.1	49	4.6	41.2	4.02
	12.8	6.2	2.1	8.6	-4.2	34.7	14.5	10,390	43.8	51.7	2.1		5.1	45.0	4.33
1	15.6	8.8	2.1	11.0	-4.6	38.7	14.8	10,571	43.3	51.8	2.1		5.6	49.2	4.65
1	18.3	11.4	2.1	13.1	-5.2	43.1	15.0	10,778	42.8	51.9	2.1		6.1	53.8	4.99
1	21.1	14.0	2.1	15.4	-5.7	47.7	15.4	11,040	42.3	52.1	2.1		6.6	58.7	5.31
	-3.9	-11.2	2.1	-5.9	-2.0	16.6	17.9	12,899	54.3	58.7	1.3		5.7	29.4	2.28
	-1.1	-8.5	2.1	-3.3	-2.2	18.7	17.5	12,616	54.0	58.8	1.3		6.0	31.2	2.47
	1.7	-5.7	2.1	-0.8	-2.5	20.8	17.1	12,328	53.7	58.9	1.3		6.3	33.0	2.68
	4.4	-3.0	2.1	1.6	-2.8	23.1	16.7	12,058	53.3	59.1	1.3		6.7	35.0	2.90
DHW	7.2	-0.2	2.1	4.1	-3.1	25.6	16.4	11,781	52.8	59.2	1.3	60	7.2	37.2	3.16
占	10.0	2.5	2.1	6.6	-3.4	28.1	16.0	11,519	52.4	59.3	1.3	(DHW)	7.6	39.5	3.43
	12.8	5.2	2.1	9.1	-3.7	30.8	15.6	11,273	51.9	59.4	1.3		8.1	42.0	3.72
	15.6	8.0	2.1	11.5	-4.1	33.8	15.3	11,054	51.4	59.5	1.3		8.6	44.7	4.05
	18.3	10.7	2.1	13.9	-4.4	36.8	15.1	10,870	50.8	59.7	1.3		9.2	47.6	4.38
	21.1	13.5	2.1	16.3	-4.8	40.1	14.8	10,706	50.2	59.8	1.3		9.8	50.7	4.74

		EVAP	ORATOR	R LOOP	(Water)		ELECTI	RICAL		CONDE	ISER LO	OP (35%	Propylen	e Glycol)	
	ELT (°C)	Evap. Temp.	Flow (L/s)	LLT (°C)	Delta T (°C)	Cooling (kW)	Compressor Current (A)*	Input Power (W)	EWT (°C)	Cond. Temp.	Flow (L/s)	LWT (°C)	Delta T (°C)	Heat Rej. (kW)	COPc
		1	2.1	7.4	-4.6	40.9	8.6	5,611	10.0	22	2.1	15.6	5.6	46.3	7.27
1		2	2.1	7.6	-4.4	40.1	9.1	5,991	12.8	25	2.1	18.3	5.5	46.0	6.71
S N		2	2.1	7.6	-4.4	39.3	9.6	6,414	15.6	28	2.1	21.0	5.4	45.6	6.13
		2	2.1	7.7	-4.3	38.7	10.2	6,881	18.3	31	2.1	23.7	5.4	45.4	5.63
000	12	3	2.1	7.8	-4.2	37.9	10.9	7,403	21.1	34	2.1	26.5	5.4	45.1	5.13
ပ	12	3	2.1	7.8	-4.2	37.2	11.6	7,977	23.9	37	2.1	29.3	5.4	45.0	4.66
		3	2.1	7.9	-4.1	36.4	12.4	8,617	26.7	40	2.1	32.0	5.3	44.9	4.22
		4	2.1	8.0	-4.0	35.7	13.3	9,319	29.4	43	2.1	34.7	5.3	44.9	3.84
		4	2.1	8.1	-3.9	34.9	14.4	10,100	32.2	46	2.1	37.5	5.3	44.8	3.46
		4	2.1	8.2	-3.8	34.1	15.5	10,953	35.0	49	2.1	40.3	5.3	44.9	3.11

Performance Tables - W-Series (US UNITS)

W-180-H**-X-*S-P* R454b, 60 Hz, GSD60182VL (460-3-60)

	EVA	PORATO	R LOOP	(35% Pro	opylene	Glycol)	ELECTI	RICAL		(CONDEN	SER LOC	OP (Wate	r)	
	ELT (°F)	Evap. Temp.	Flow (gpm)	LLT (°F)	Delta T (°F)	Heat Abs. (Btu/hr)	Compressor Current (A)*	Input Power (W)	EWT (°F)	Cond. Temp.	Flow (gpm)	LWT (°F)	Delta T (°F)	Heating (Btu/hr)	СОРн
	25	15	48	21	-3.7	81,100	16.6	11,650		113	48	109	5.0	120,100	3.02
	30	19	48	26	-4.1	92,000	16.7	11,743		114	48	110	5.5	131,400	3.28
	35	24	48	30	-4.7	104,000	16.8	11,837		115	48	110	6.0	143,700	3.56
	40	29	48	35	-5.2	117,000	16.9	11,936		116	48	111	6.6	157,100	3.86
	45	33	48	39	-5.9	130,900	17.1	12,041	104	116	48	111	7.2	171,400	4.17
	50	38	48	44	-6.5	146,400	17.2	12,156	104	117	48	112	7.8	187,300	4.52
	55	43	48	48	-7.3	162,700	17.4	12,282		118	48	113	8.6	204,100	4.87
<u>o</u>	60	47	48	52	-8.1	180,800	17.6	12,423		118	48	113	9.3	222,700	5.25
	65	52	48	56	-8.9	200,300	17.8	12,583		119	48	114	10.2	242,800	5.66
HEATING	70	57	48	60	-9.8	221,000	18.0	12,758		120	48	115	11.1	264,100	6.07
뿔	25	15	48	22	-3.3	74,000	17.8	12,744	115	123	48		4.9	116,800	2.69
	30	20	48	26	-3.8	84,600	18.0	12,881	115	124	48		5.4	127,900	2.91
	35	24	48	31	-4.3	96,200	18.2	13,004	114	124	48		5.9	139,900	3.15
	40	29	48	35	-4.9	108,800	18.4	13,146	114	124	48		6.4	153,000	3.41
	45	34	48	40	-5.5	122,800	18.6	13,279	113	124	48	120	7.0	167,500	3.70
	50	38	48	44	-6.2	137,900	18.8	13,437	112	125	48	120	7.7	183,200	4.00
	55	43	48	48	-6.9	154,100	19.0	13,590	112	125	48		8.4	200,000	4.31
	60	48	48	52	-7.7	172,000	19.3	13,776	111	125	48		9.2	218,500	4.65
	65	52	48	56	-8.5	191,500	19.6	13,965	110	125	48		10.0	238,700	5.01
	70	57	48	60	-9.5	212,500	19.9	14,192	109	126	48		11.0	260,500	5.38
	25	12	48	22	-3.3	74,300	23.4	16,871	129	137	25		10.7	131,200	2.28
	30	17	48	26	-3.7	83,000	23.0	16,544	129	138	25		11.3	138,800	2.46
	35	22	48	31	-4.2	92,500	22.5	16,210	128	138	25		12.0	147,200	2.66
	40	27	48	35	-4.6	102,500	22.0	15,869	127	138	25		12.7	156,100	2.88
DHW	45	32	48	40	-5.1	113,500	21.5	15,528	127	139	25	140	13.5	165,900	3.13
占	50	36	48	44	-5.6	125,000	21.1	15,187	126	139	25	(DHW)	14.3	176,300	3.40
	55	41	48	49	-6.1	137,300	20.6	14,849	125	139	25		15.2	187,500	3.70
	60	46	48	53	-6.7	150,900	20.1	14,518	124	139	25		16.2	200,000	4.04
	65	51	48	58	-7.4	165,100	19.7	14,193	123	140	25		17.3	213,100	4.40
	70	56	48	62	-8.1	180,700	19.2	13,879	122	140	25		18.5	227,700	4.81

		EVAF	ORATOR	R LOOP	(Water)		ELECTI	RICAL		CONDE	ISER LO	OP (35%	Propyler	e Glycol)	
	ELT (°F)	Evap. Temp.	Flow (gpm)	LLT (°F)	Delta T (°F)	Cooling (Btu/hr)	Compressor Current (A)*	Input Power (W)	EWT (°F)	Cond. Temp.	Flow (gpm)	LWT (°F)	Delta T (°F)	Heat Rej. (Btu/hr)	EER
		34	48	46	-7.5	180,900	11.6	7,358	50	73	48	59	9.2	205,400	24.6
		35	48	46	-7.4	178,300	12.2	7,870	55	78	48	64	9.1	204,500	22.7
NG		35	48	46	-7.3	175,100	12.9	8,446	60	83	48	69	9.1	203,300	20.7
		36	48	46	-7.2	172,200	13.7	9,076	65	88	48	74	9.0	202,600	19.0
COOL	5 4	37	48	47	-7.0	168,800	14.6	9,778	70	94	48	79	9.0	201,600	17.3
$\ddot{\circ}$	54	37	48	47	-6.9	165,500	15.5	10,539	75	99	48	84	8.9	200,900	15.7
		38	48	47	-6.7	161,800	16.5	11,382	80	104	48	89	8.9	200,000	14.2
		38	48	47	-6.6	158,300	17.7	12,288	85	109	48	94	8.9	199,700	12.9
		39	48	47	-6.4	154,300	18.9	13,284	90	115	48	99	8.8	199,100	11.6
		39	48	47	-6.3	150,500	20.2	14,349	95	120	48	104	8.8	198,900	10.5

Performance Tables - W-Series (METRIC UNITS)

W-180-H**-X-*S-P* R454b, 60 Hz, GSD60182VL (460-3-60)

	EVA	PORATO	R LOOP	(35% Pro	opylene (Glycol)	ELECT	RICAL		(CONDEN	SER LOC	OP (Water)	
	ELT (°C)	Evap. Temp.	Flow (L/s)	LLT (°C)	Delta T (°C)	Heat Abs. (kW)	Compressor Current (A)*	Input Power (W)	EWT (°C)	Cond. Temp.	Flow (L/s)	LWT (°C)	Delta T (°C)	Heating (kW)	СОРн
	-3.9	-9.6	3.0	-6.0	-2.1	23.8	16.6	11,650		45.2	3.0	42.8	2.8	35.2	3.02
	-1.1	-7.1	3.0	-3.4	-2.3	27.0	16.7	11,743		45.6	3.0	43.1	3.1	38.5	3.28
	1.7	-4.4	3.0	-0.9	-2.6	30.5	16.8	11,837		46.0	3.0	43.3	3.3	42.1	3.56
	4.4	-1.8	3.0	1.5	-2.9	34.3	16.9	11,936		46.4	3.0	43.7	3.7	46.0	3.86
	7.2	0.7	3.0	3.9	-3.3	38.4	17.1	12,041	40	46.8	3.0	44.0	4.0	50.2	4.17
	10.0	3.3	3.0	6.4	-3.6	42.9	17.2	12,156	40	47.2	3.0	44.3	4.3	54.9	4.52
	12.7	5.9	3.0	8.6	-4.1	47.7	17.4	12,282		47.6	3.0	44.8	4.8	59.8	4.87
O	15.6	8.5	3.0	11.1	-4.5	53.0	17.6	12,423		47.9	3.0	45.2	5.2	65.3	5.25
ΙZ	18.3	11.1	3.0	13.4	-4.9	58.7	17.8	12,583		48.3	3.0	45.7	5.7	71.2	5.66
HEATING	21.1	13.7	3.0	15.7	-5.4	64.8	18.0	12,758		48.7	3.0	46.2	6.2	77.4	6.07
ΗΨ	-3.9	-9.6	3.0	-5.7	-1.8	21.7	17.8	12,744	46.2	50.8	3.0		2.7	34.2	2.69
	-1.1	-6.9	3.0	-3.2	-2.1	24.8	18.0	12,881	45.9	50.9	3.0		3.0	37.5	2.91
	1.7	-4.3	3.0	-0.7	-2.4	28.2	18.2	13,004	45.6	51.1	3.0		3.3	41.0	3.15
	4.4	-1.7	3.0	1.7	-2.7	31.9	18.4	13,146	45.3	51.2	3.0		3.6	44.8	3.41
	7.2	0.9	3.0	4.1	-3.1	36.0	18.6	13,279	45.0	51.3	3.0	49	3.9	49.1	3.70
	10.0	3.5	3.0	6.6	-3.4	40.4	18.8	13,437	44.6	51.5	3.0	49	4.3	53.7	4.00
	12.7	6.1	3.0	8.9	-3.8	45.2	19.0	13,590	44.2	51.6	3.0		4.7	58.6	4.31
	15.5	8.7	3.0	11.2	-4.3	50.4	19.3	13,776	43.8	51.8	3.0		5.1	64.0	4.65
	18.3	11.3	3.0	13.6	-4.7	56.1	19.6	13,965	43.3	51.9	3.0		5.6	70.0	5.01
	21.1	13.9	3.0	15.8	-5.3	62.3	19.9	14,192	42.8	52.1	3.0		6.1	76.4	5.38
	-3.9	-11.3	3.0	-5.7	-1.8	21.8	23.4	16,871	54.1	58.5	1.6		5.9	38.5	2.28
	-1.1	-8.6	3.0	-3.2	-2.1	24.3	23.0	16,544	53.7	58.7	1.6		6.3	40.7	2.46
	1.7	-5.8	3.0	-0.6	-2.3	27.1	22.5	16,210	53.3	58.8	1.6		6.7	43.1	2.66
	4.4	-3.1	3.0	1.8	-2.6	30.0	22.0	15,869	52.9	59.0	1.6		7.1	45.8	2.88
DHW	7.2	-0.3	3.0	4.4	-2.8	33.3	21.5	15,528	52.5	59.2	1.6	60	7.5	48.6	3.13
古	10.0	2.4	3.0	6.9	-3.1	36.6	21.1	15,187	52.1	59.3	1.6	(DHW)	7.9	51.7	3.40
	12.8	5.2	3.0	9.4	-3.4	40.2	20.6	14,849	51.6	59.5	1.6		8.4	55.0	3.70
	15.6	7.9	3.0	11.9	-3.7	44.2	20.1	14,518	51.0	59.7	1.6		9.0	58.6	4.04
	18.3	10.7	3.0	14.2	-4.1	48.4	19.7	14,193	50.4	59.8	1.6		9.6	62.5	4.40
	21.1	13.4	3.0	16.6	-4.5	53.0	19.2	13,879	49.7	60.0	1.6		10.3	66.7	4.81

		EVAP	ORATOR	R LOOP	(Water)		ELECTI	RICAL		CONDE	ISER LO	OP (35%	Propyler	e Glycol)	
	ELT (°C)	Evap. Temp.	Flow (L/s)	LLT (°C)	Delta T (°C)	Cooling (kW)	Compressor Current (A)*	Input Power (W)	EWT (°C)	Cond. Temp.	Flow (L/s)	LWT (°C)	Delta T (°C)	Heat Rej. (kW)	COPc
		1	3.0	7.8	-4.2	53.0	11.6	7,358	10.0	23	3.0	15.1	5.1	60.2	7.21
		2	3.0	7.9	-4.1	52.3	12.2	7,870	12.8	25	3.0	17.9	5.1	59.9	6.65
S N		2	3.0	7.9	-4.1	51.3	12.9	8,446	15.6	28	3.0	20.7	5.1	59.6	6.07
		2	3.0	8.0	-4.0	50.5	13.7	9,076	18.3	31	3.0	23.3	5.0	59.4	5.57
8	40	3	3.0	8.1	-3.9	49.5	14.6	9,778	21.1	34	3.0	26.1	5.0	59.1	5.07
၂၂ တ	12	3	3.0	8.2	-3.8	48.5	15.5	10,539	23.9	37	3.0	28.8	4.9	58.9	4.60
		3	3.0	8.3	-3.7	47.4	16.5	11,382	26.7	40	3.0	31.6	4.9	58.6	4.16
		3	3.0	8.3	-3.7	46.4	17.7	12,288	29.4	43	3.0	34.3	4.9	58.5	3.78
		4	3.0	8.4	-3.6	45.2	18.9	13,284	32.2	46	3.0	37.1	4.9	58.4	3.40
		4	3.0	8.5	-3.5	44.1	20.2	14,349	35.0	49	3.0	39.9	4.9	58.3	3.08

Performance Tables - W-Series (US UNITS)

W-235-H**-X-*S-P* R454b, 60 Hz, GSD60235VL (460-3-60) *Compressor current is for 460-3-60. Multiply by 0.8 for 575-3-60.

	EVA	PORATO	R LOOP	(35% Pro	opylene (Glycol)	ELECTI	RICAL		(CONDEN	SER LOC	P (Wate	r)	
	ELT (°F)	Evap. Temp.	Flow (gpm)	LLT (°F)	Delta T (°F)	Heat Abs. (Btu/hr)	Compressor Current (A)*	Input Power (W)	EWT (°F)	Cond. Temp.	Flow (gpm)	LWT (°F)	Delta T (°F)	Heating (Btu/hr)	СОРн
	25	15	60	21	-3.8	105,700	22.2	15,126		114	60	109	5.2	156,200	3.03
	30	19	60	26	-4.3	120,000	22.3	15,232		115	60	110	5.7	170,900	3.29
	35	24	60	30	-4.9	135,400	22.4	15,357		115	60	110	6.3	186,800	3.56
	40	29	60	35	- 5.5	152,300	22.6	15,476		116	60	111	6.8	204,100	3.87
	45	34	60	39	-6.1	170,700	22.8	15,630	104	117	60	112	7.5	223,100	4.18
	50	38	60	43	-6.8	190,700	23.0	15,794	104	117	60	112	8.2	243,700	4.52
	55	43	60	47	-7.6	212,100	23.2	15,989		118	60	113	8.9	265,800	4.87
<u>o</u>	60	48	60	52	-8.4	235,600	23.5	16,243		118	60	114	9.7	290,200	5.24
	65	52	60	56	-9.3	261,100	23.9	16,531		119	60	115	10.6	316,700	5.61
HEATING	70	57	60	60	-10.3	288,500	24.3	16,891		120	60	116	11.6	345,300	5.99
뿐	25	15	60	22	-3.5	96,400	24.0	16,748	115	124	60		5.1	152,400	2.67
	30	20	60	26	-4.0	110,100	24.2	16,882	114	124	60		5.6	166,600	2.89
	35	24	60	31	-4.5	125,100	24.4	17,003	114	124	60		6.1	182,100	3.14
	40	29	60	35	-5.1	141,800	24.6	17,155	113	125	60		6.7	199,300	3.40
	45	34	60	39	-5.7	159,900	24.8	17,309	113	125	60	400	7.3	218,000	3.69
	50	39	60	44	-6.4	179,600	25.1	17,511	112	125	60	120	8.0	238,400	3.99
	55	43	60	48	-7.2	201,100	25.4	17,731	111	125	60		8.8	260,700	4.31
	60	48	60	52	-8.0	224,500	25.8	18,014	110	126	60		9.6	285,100	4.64
	65	53	60	56	-8.9	250,100	26.2	18,332	110	126	60		10.5	311,800	4.98
	70	57	60	60	-9.9	277,600	26.7	18,730	109	126	60		11.5	340,700	5.33
	25	12	60	22	-3.4	95,400	31.8	22,411	130	138	35		9.9	170,800	2.23
	30	17	60	26	-3.8	106,800	31.0	21,851	130	138	35		10.5	180,300	2.42
	35	22	60	31	-4.3	119,400	30.2	21,286	129	138	35		11.1	191,000	2.63
	40	27	60	35	-4.8	132,900	29.3	20,701	128	139	35		11.7	202,600	2.87
DHW	45	32	60	40	-5.3	147,700	28.5	20,153	128	139	35	140	12.5	215,500	3.13
古	50	37	60	44	-5.8	163,300	27.8	19,622	127	139	35	(DHW)	13.3	229,400	3.43
	55	42	60	49	-6.4	180,200	27.0	19,116	126	139	35		14.2	244,600	3.75
	60	47	60	53	-7.1	198,900	26.3	18,640	125	140	35		15.2	261,700	4.11
	65	51	60	57	-7.8	218,800	25.6	18,171	124	140	35		16.2	280,000	4.52
	70	56	60	61	-8.6	240,400	25.0	17,762	123	140	35		17.4	300,200	4.95

		EVAF	ORATOR	R LOOP	(Water)		ELECTI	RICAL		CONDE	NSER LO	OP (35%	Propyler	ne Glycol)	
	ELT (°F)	Evap. Temp.	Flow (gpm)	LLT (°F)	Delta T (°F)	Cooling (Btu/hr)	Compressor Current (A)*	Input Power (W)	EWT (°F)	Cond. Temp.	Flow (gpm)	LWT (°F)	Delta T (°F)	Heat Rej. (Btu/hr)	EER
		34	60	46	-7.8	235,100	15.7	9,415	50	73	60	60	9.5	266,200	25.0
		35	60	46	-7.7	231,600	16.6	10,146	55	78	60	65	9.5	265,300	22.8
NG		36	60	46	-7.6	227,500	17.6	10,932	60	83	60	69	9.4	263,900	20.8
		36	60	46	-7.5	223,700	18.6	11,763	65	88	60	74	9.4	263,000	19.0
COOL	5 4	37	60	46	-7.3	219,400	19.7	12,666	70	94	60	79	9.3	261,800	17.3
$\ddot{\circ}$	54	37	60	46	-7.2	215,200	20.9	13,629	75	99	60	84	9.3	261,000	15.8
		38	60	47	-7.0	210,500	22.2	14,682	80	104	60	89	9.2	259,900	14.3
		38	60	47	-6.9	206,000	23.6	15,811	85	109	60	94	9.2	259,300	13.0
		39	60	47	-6.7	200,900	25.2	17,052	90	115	60	99	9.2	258,500	11.8
		39	60	47	-6.5	195,900	26.9	18,387	95	120	60	104	9.2	258,100	10.7

Performance Tables - W-Series (METRIC UNITS)

W-235-H**-X-*S-P*

R454b, 60 Hz, GSD60235VL (460-3-60)

*Compressor current is for 460-3-60. Multiply by 0.8 for 575-3-60.

	EVA	PORATO	R LOOP	(35% Pro	opylene	Glycol)	ELECT	RICAL		(CONDEN	SER LOC	OP (Water)	
	ELT (°C)	Evap. Temp.	Flow (L/s)	LLT (°C)	Delta T (°C)	Heat Abs. (kW)	Compressor Current (A)*	Input Power (W)	EWT (°C)	Cond. Temp.	Flow (L/s)	LWT (°C)	Delta T (°C)	Heating (kW)	СОРн
	-3.9	-9.6	3.8	-6.0	-2.1	31.0	22.2	15,126		45.5	3.8	42.9	2.9	45.8	3.03
	-1.1	-7.0	3.8	-3.5	-2.4	35.2	22.3	15,232		45.8	3.8	43.2	3.2	50.1	3.29
	1.7	-4.4	3.8	-1.0	-2.7	39.7	22.4	15,357		46.2	3.8	43.5	3.5	54.8	3.56
	4.4	-1.8	3.8	1.3	-3.1	44.6	22.6	15,476		46.6	3.8	43.8	3.8	59.8	3.87
	7.2	0.8	3.8	3.8	-3.4	50.0	22.8	15,630	40	46.9	3.8	44.2	4.2	65.4	4.18
	10.0	3.4	3.8	6.2	-3.8	55.9	23.0	15,794	40	47.3	3.8	44.6	4.6	71.4	4.52
	12.7	6.0	3.8	8.5	-4.2	62.2	23.2	15,989		47.6	3.8	44.9	4.9	77.9	4.87
G	15.5	8.6	3.8	10.8	-4.7	69.1	23.5	16,243		48.0	3.8	45.4	5.4	85.1	5.24
Z	18.3	11.2	3.8	13.1	-5.2	76.5	23.9	16,531		48.3	3.8	45.9	5.9	92.8	5.61
HEATING	21.1	13.8	3.8	15.4	-5.7	84.6	24.3	16,891		48.7	3.8	46.4	6.4	101.2	5.99
뽀	-3.9	-9.5	3.8	-5.8	-1.9	28.3	24.0	16,748	46.1	51.0	3.8		2.8	44.7	2.67
	-1.1	-6.9	3.8	-3.3	-2.2	32.3	24.2	16,882	45.8	51.2	3.8		3.1	48.8	2.89
	1.7	-4.3	3.8	-0.8	-2.5	36.7	24.4	17,003	45.5	51.3	3.8		3.4	53.4	3.14
	4.4	-1.6	3.8	1.6	-2.8	41.6	24.6	17,155	45.2	51.4	3.8		3.7	58.4	3.40
	7.2	1.0	3.8	4.0	-3.2	46.9	24.8	17,309	44.8	51.6	3.8	49	4.1	63.9	3.69
	10.0	3.6	3.8	6.4	-3.6	52.6	25.1	17,511	44.4	51.7	3.8	49	4.4	69.9	3.99
	12.8	6.2	3.8	8.8	-4.0	58.9	25.4	17,731	44.0	51.8	3.8		4.9	76.4	4.31
	15.6	8.8	3.8	11.2	-4.4	65.8	25.8	18,014	43.6	52.0	3.8		5.3	83.6	4.64
	18.3	11.4	3.8	13.4	-4.9	73.3	26.2	18,332	43.1	52.1	3.8		5.8	91.4	4.98
	21.1	14.1	3.8	15.6	-5.5	81.4	26.7	18,730	42.5	52.3	3.8		6.4	99.9	5.33
	-3.9	-11.2	3.8	-5.8	-1.9	28.0	31.8	22,411	54.5	58.7	2.2		5.5	50.1	2.23
	-1.1	-8.4	3.8	-3.2	-2.1	31.3	31.0	21,851	54.2	58.9	2.2		5.8	52.8	2.42
	1.7	-5.7	3.8	-0.7	-2.4	35.0	30.2	21,286	53.8	59.1	2.2		6.2	56.0	2.63
	4.4	-2.9	3.8	1.7	-2.7	39.0	29.3	20,701	53.5	59.2	2.2		6.5	59.4	2.87
DHW	7.2	-0.2	3.8	4.3	-2.9	43.3	28.5	20,153	53.1	59.3	2.2	60	6.9	63.2	3.13
占	10.0	2.6	3.8	6.8	-3.2	47.9	27.8	19,622	52.6	59.5	2.2	(DHW)	7.4	67.2	3.43
	12.8	5.3	3.8	9.2	-3.6	52.8	27.0	19,116	52.1	59.7	2.2		7.9	71.7	3.75
	15.6	8.1	3.8	11.7	-3.9	58.3	26.3	18,640	51.6	59.8	2.2		8.4	76.7	4.11
	18.3	10.8	3.8	14.0	-4.3	64.1	25.6	18,171	51.0	59.9	2.2		9.0	82.1	4.52
	21.1	13.6	3.8	16.3	-4.8	70.5	25.0	17,762	50.3	60.1	2.2		9.7	88.0	4.95

		EVAP	ORATOR	R LOOP	(Water)		ELECT	RICAL		CONDE	ISER LO	OP (35%	Propyler	e Glycol)	
	ELT (°C)	Evap. Temp.	Flow (L/s)	LLT (°C)	Delta T (°C)	Cooling (kW)	Compressor Current (A)*	Input Power (W)	EWT (°C)	Cond. Temp.	Flow (L/s)	LWT (°C)	Delta T (°C)	Heat Rej. (kW)	COPc
		1	3.8	7.7	-4.3	68.9	15.7	9,415	10.0	23	3.8	15.3	5.3	78.0	7.33
	<u>o</u>	2	3.8	7.7	-4.3	67.9	16.6	10,146	12.8	25	3.8	18.1	5.3	77.8	6.68
S S	5	2	3.8	7.8	-4.2	66.7	17.6	10,932	15.6	28	3.8	20.8	5.2	77.3	6.10
		2	3.8	7.8	-4.2	65.6	18.6	11,763	18.3	31	3.8	23.5	5.2	77.1	5.57
8	40	3	3.8	7.9	-4.1	64.3	19.7	12,666	21.1	34	3.8	26.3	5.2	76.7	5.07
S	12	3	3.8	8.0	-4.0	63.1	20.9	13,629	23.9	37	3.8	29.1	5.2	76.5	4.63
i I		3	3.8	8.1	-3.9	61.7	22.2	14,682	26.7	40	3.8	31.8	5.1	76.2	4.19
		4	3.8	8.2	-3.8	60.4	23.6	15,811	29.4	43	3.8	34.5	5.1	76.0	3.81
		4	3.8	8.3	-3.7	58.9	25.2	17,052	32.2	46	3.8	37.3	5.1	75.8	3.46
i 🔛		4	3.8	8.4	-3.6	57.4	26.9	18,387	35.0	49	3.8	40.1	5.1	75.6	3.14

WH-100-H***-Y-*S-CC R513a, 60 Hz, ZH40KCE-TFD (460-3-60)

- * Cooling via reversing models (-HAC), or switching indoor/outdoor
 ** Lower cooling mode outdoor loop ELT's may require flow control

 † Compressor current is for 460-3-60.
 [Multiply by 2.2 for 208-3-60, by 0.8 for 575-3-60.]

		OU	TDOOR I	LOOP (N	/ater)		ELECT	RICAL			INDOO	R LOOP	(Water)		
	ELT (°F)	Evap. Temp.	Flow (gpm)	LLT (°F)	Delta T (°F)	Heat Abs. (Btu/hr)	Compressor Current (A)	Input Power (W)	EWT (°F)	Cond. Temp.	Flow (gpm)	LWT (°F)	Delta T (°F)	Heating (Btu/hr)	СОРн
	50	39	28	47	-3.5	49,400	9.8	6,180	115	127	28		5.0	69,800	3.31
	60	48	28	56	-4.3	60,900	10.0	6,299	114	127	28		5.9	81,700	3.80
	70	57	28	65	-5.3	73,800	10.2	6,429	113	128	28	120	6.8	95,000	4.33
	80	66	28	74	-6.3	88,300	10.4	6,581	112	128	28		7.9	110,100	4.90
40	90	75	28	83	-7.5	104,400	10.7	6,762	111	129	28		9.1	126,800	5.50
HEATING	50	39	28	47	-3.0	42,200	11.0	7,488	135	146	28		4.8	67,000	2.62
E.	60	49	28	56	-3.7	51,800	11.1	7,580	135	146	28		5.5	77,000	2.98
1	70	58	28	66	-4.4	61,800	11.3	7,679	134	147	28	140	6.3	87,300	3.33
.	80	67	28	75	-5.2	72,600	11.5	7,793	133	147	28		7.1	98,500	3.70
	90	76	28	84	-6.0	83,800	11.7	7,932	132	148	28		8.0	110,200	4.07
	50	42	28	48	-2.4	33,600	12.5	9,014	155	166	28		4.6	63,600	2.07
	60	50	28	57	-3.0	41,400	12.7	9,124	155	166	28		5.2	71,800	2.31
	70	59	28	67	-3.5	49,500	12.8	9,235	154	167	28	160	5.8	80,300	2.55
	80	68	28	76	-4.1	57,500	13.0	9,357	154	167	28		6.4	88,700	2.78
	90	77	28	85	-4.7	65,700	13.2	9,496	153	167	28		7.1	97,400	3.01
	F1. T	01	EI.		D.II. T	Heat Del	Compressor	lee t	E)A/E	Г	EL.	LVA/T	D.II. T	0	
	ELT (°F)	Cond. Temp.	Flow	LLT (°F)	Delta T (°F)	Heat Rej. (Btu/hr)	Current (A)	Input Power (W)	EWT (°F)	Evap. Temp.	Flow (gpm)	LWT (°F)	Delta T (°F)	Cooling (Btu/hr)	EER
	` '		(gpm)	. ,	` '	` '		` '	()	'	,	, ,		` '	40.0
_	50	74	28	55	5.2	72,800	6.8	3,407		36	28	49	-4.5	62,200	18.3
Ö	55	79	28	60	5.1	71,800	6.9	3,535		36	28	49	-4.4	60,800	17.2
Z	60	84	28	65	5.1	70,900	7.0	3,670		37	28	49	-4.3	59,400	16.2
COOLING*	65	89	28	70	5.0	69,800	7.0	3,820		37	28	49	-4.2	57,800	15.1
8	70	95	28	75	4.9	68,700	7.1	3,979	54	38	28	50	-4.0	56,100	14.1
Ö	75	100	28	80	4.8	67,400	7.2	4,148		38	28	50	-3.9	54,300	13.1
	80	105	28	85	4.8	66,300	7.4	4,333		39	28	50	-3.8	52,500	12.1
	85	110	28	90	4.7	65,000	7.5	4,533		39	28	50	-3.6	50,500	11.1
	90	115	28	95	4.6	63,700	7.7	4,742		40	28	50	-3.5	48,500	10.2
	0.5	400			1 7 -	CO 400	7.0						0.4		

METRIC

120

28

100

4.5

62,400

7.8

4,971

40

28

-3.4

46,400

9.3

ELT Evap. (CC) Temp. (LIS) CCO CCO Temp. (LIS) CCO			OU	TDOOR I	LOOP (W	/ater)		ELECTI	RICAL			INDOO	R LOOP	(Water)		
15.6 8.9 1.8 13.2 -2.4 17.8 10.0 6.299 45.6 52.9 1.8 49 3.3 23.9 23.1 13.9 1.8 18.2 -2.9 21.6 10.2 6.429 45.1 53.2 1.8 49 3.8 27.8 26.7 18.9 1.8 23.2 -3.5 25.9 10.4 6.581 44.5 53.4 1.8 4.4 32.3 32.2 23.9 1.8 28.0 -4.2 30.6 10.7 6.762 43.8 53.7 1.8 55.1 37.2 10.0 4.1 1.8 8.3 -1.7 12.4 11.0 7.488 57.3 63.3 1.8 2.7 19.6 15.6 9.2 1.8 13.5 -2.1 15.2 11.1 7.580 56.9 63.6 1.8 60 3.5 25.6 22.6 21.1 14.3 1.8 18.7 -2.4 18.1 11.3 7.679 56.5 63.8 1.8 60 3.5 25.6 22.6 24.4 1.8 28.9 -3.3 24.6 11.7 7.932 55.6 64.2 1.8 3.9 28.9 3.22 24.4 1.8 28.9 -3.3 24.6 11.7 7.932 55.6 64.2 1.8 4.4 32.3 32.2 24.4 1.8 28.9 -3.3 24.6 11.7 7.932 55.6 64.2 1.8 4.4 32.3 32.2 24.4 1.8 28.9 -3.3 24.6 11.7 7.932 55.6 64.2 1.8 4.4 32.3 32.2 25.0 1.8 13.9 -1.7 12.1 12.7 9.124 68.2 74.6 1.8 2.9 21.0 21.1 15.2 1.8 19.2 -1.9 14.5 12.8 9.235 67.9 74.8 1.8 71 3.2 23.5 3.9 28.5 3.9 28.5 3.9 28.5 3.9 28.5 3.9 28.5 3.9 28.5 3.9 28.5 3.9 28.5 3.9 28.5 3.9 28.5 3.9 28.5 3.9 28.5 3.9 28.5 3.9 28.5 3.9 28.5 3.9 28.5 3.9 28.5 3.9 3.8 1.8 26.6 2.7 19.8 7.0 3.670 3.670 3.670 3.670 3.670 3.670 3.820 3.8 2.9 2.1 15.4 2.8 2.2 16.4 2.9 2.1 3.5 3.8 2.2 2.1 3.5 3.8 2.2 2.1 3.5 3.8 2.2 3.5 3.8 2.2 3.5 3.8 2.2 3.5 3.8 3.8 2.2 3.5 3.8 3								· · ·								СОРн
21.1 13.9 1.8 18.2 -2.9 21.6 10.2 6,429 45.1 53.2 1.8 49 3.8 27.8 26.7 18.9 1.8 23.2 -3.5 25.9 10.4 6,581 44.5 53.4 1.8 44.4 32.3 32.2 23.9 1.8 28.0 -4.2 30.6 10.7 6,762 43.8 53.7 1.8 53.7 1.8 51. 37.2 10.0 4.1 1.8 8.3 -1.7 12.4 11.0 7,488 57.3 63.3 1.8 2.7 19.6 51. 37.2 11.6 6.9 9.2 1.8 13.5 -2.1 15.2 11.1 7,580 56.9 63.6 1.8 21.1 14.3 1.8 18.7 -2.4 18.1 11.3 7,679 56.5 63.8 1.8 60 3.5 25.6 26.7 19.4 1.8 28.9 -3.3 24.6 11.7 7,932 55.6 64.2 1.8 28.9 3.3 22.2 24.4 1.8 28.9 -3.3 24.6 11.7 7,932 55.6 64.2 1.8 10.0 5.3 1.8 8.7 -1.3 9.8 12.5 9,014 68.6 74.3 1.8 26.6 10.2 1.8 13.9 -1.7 12.1 12.7 9,124 68.2 74.6 1.8 22.9 21.0 12.1 15.2 11.8 19.2 -1.9 14.5 12.8 9,235 67.9 74.8 1.8 1.8 71 3.2 23.5 3.6 26.0 32.2 25.0 1.8 29.6 -2.6 19.3 13.2 9,496 67.2 75.2 1.8 71.8 29.5 -2.5 18.2 12.8 26 1.8 15.6 2.8 21.0 6.9 3,535 12.0 (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C)		10.0	3.9	1.8	8.1	-1.9	14.5	9.8	6,180	46.1	52.6	1.8		2.8	20.5	3.31
26.7 18.9 1.8 23.2 -3.5 25.9 10.4 6,581 44.5 53.4 1.8 4.4 32.3 32.2 23.9 1.8 28.0 -4.2 30.6 10.7 6,762 43.8 53.7 1.8 51 37.2 10.0 4.1 1.8 8.3 -1.7 12.4 11.0 7,488 57.3 63.3 1.8 2.7 19.6 15.6 9.2 1.8 13.5 -2.1 15.2 11.1 7,580 56.9 63.6 1.8 22.1 14.3 1.8 18.7 -2.4 18.1 11.3 7,679 56.5 63.8 1.8 60 3.5 25.6 22.1 11.1 14.3 1.8 18.7 -2.4 18.1 11.3 7,679 56.5 63.8 1.8 60 3.5 25.6 3.9 22.2 24.4 1.8 28.9 -3.3 24.6 11.7 7,932 56.1 64.0 1.8 28.9 10.0 5.3 1.8 8.7 -1.3 9.8 12.5 9,014 68.6 74.3 1.8 18.7 19.2 11.1 15.2 1.8 13.9 -1.7 12.1 12.7 9,124 68.2 74.6 1.8 2.9 21.0 13.2 23.5 12.1 15.2 1.8 19.2 -1.9 14.5 12.8 9,235 67.9 74.8 1.8 71 3.2 23.5 24.0 12.1 15.2 1.8 12.9 29.6 -2.6 19.3 13.2 9,496 67.2 75.2 1.8 71 3.2 23.5 12.8 25.0 1.8 29.6 -2.6 19.3 13.2 9,496 67.2 75.2 1.8 18.9 28.5 12.8 29.8 12.8 21.0 6.9 3,535 22.1 18.3 3.2 1.8 21.1 2.8 20.8 7.0 3,670 18.3 3.1 8 9.6 -2.4 17.4 22.4 18.3 3.9 3.9 3.8 1.8 26.6 2.7 19.8 7.0 3,670 21.1 35 1.8 23.8 2.7 20.1 7.1 3,979 12.0 3.8 29.6 -2.2 15.9 21.1 15.4 29.4 43 1.8 29.4 2.7 19.8 7.2 4,148 22.4 43 1.8 29.4 2.7 19.8 7.2 4,148 22.4 43 1.8 29.4 2.7 19.8 7.2 4,148 22.4 43 1.8 29.4 2.7 19.8 7.2 4,148 22.4 43 1.8 29.4 2.7 19.8 7.2 4,148 22.4 43 1.8 29.4 2.7 19.8 7.2 4,148 22.4 43 1.8 29.4 2.7 19.8 7.2 4,148 22.4 43 1.8 29.4 2.7 19.6 19.0 7.5 4,533 44 1.8 10.0 -2.0 14.8		15.6	8.9	1.8	13.2	-2.4	17.8	10.0	6,299	45.6	52.9	1.8		3.3	23.9	3.80
32.2 23.9 1.8 28.0 -4.2 30.6 10.7 6,762 43.8 53.7 1.8 5.1 37.2 10.0 4.1 1.8 8.3 -1.7 12.4 11.0 7,488 57.3 63.3 1.8 2.7 19.6 15.6 9.2 1.8 13.5 -2.1 15.2 11.1 7,580 56.9 63.6 1.8 21.1 14.3 1.8 18.7 -2.4 18.1 11.3 7,679 56.5 63.8 1.8 26.7 19.4 1.8 28.9 -3.3 24.6 11.7 7,932 55.6 64.2 1.8 4.4 32.3 10.0 5.3 1.8 8.7 -1.3 9.8 12.5 9,014 68.6 74.3 1.8 2.6 18.6 15.6 10.2 1.8 13.9 -1.7 12.1 12.7 9,124 68.2 74.6 1.8 22.1 15.2 11.1 15.2 1.8 19.2 -1.9 14.5 12.8 9,235 67.9 74.8 1.8 1.8 2.9 2.9 21.0 1.8 22.6 19.3 13.2 9,496 67.2 75.2 1.8 71 3.2 23.5 62.0 32.2 25.0 1.8 29.6 -2.6 19.3 13.2 9,496 67.2 75.2 1.8 71 3.2 23.5 18.2 23.5 18.2 29.9 18.1 18.4 2.8 20.8 7.0 3,670 18.3 3.2 18.8 21.1 2.8 20.5 7.0 3,820 21.1 35 1.8 23.8 2.7 20.1 7.1 3,979 22.9 12.1 35 1.8 23.8 2.7 20.1 7.1 3,979 22.9 12.1 15.4 28.2 29.4 43 1.8 29.4 2.7 19.8 7.2 4,148 29.4 43 1.8 29.4 2.7 19.8 7.2 4,148 29.4 43 1.8 32.0 2.6 19.0 7.5 4,533		21.1	13.9	1.8	18.2	-2.9	21.6	10.2	6,429	45.1	53.2	1.8	49	3.8	27.8	4.33
10.0 4.1 1.8 8.3 -1.7 12.4 11.0 7,488 57.3 63.3 1.8 2.7 19.6 15.6 9.2 1.8 13.5 -2.1 15.2 11.1 7,580 56.9 63.6 1.8 21.1 14.3 1.8 18.7 -2.4 18.1 11.3 7,679 56.5 63.8 1.8 60 3.5 25.6 21.1 14.3 1.8 18.7 -2.4 18.1 11.3 7,679 56.5 63.8 1.8 60 3.5 25.6 26.7 19.4 1.8 23.8 -2.9 21.3 11.5 7,793 56.1 64.0 1.8 32.2 24.4 1.8 28.9 -3.3 24.6 11.7 7,932 55.6 64.2 1.8 4.4 32.3 10.0 5.3 1.8 8.7 -1.3 9.8 12.5 9,014 68.6 74.3 1.8 2.6 18.6 15.6 10.2 1.8 13.9 -1.7 12.1 12.7 9,124 68.2 74.6 1.8 2.9 21.0 15.6 10.2 1.8 19.2 -1.9 14.5 12.8 9,235 67.9 74.8 1.8 71 3.2 23.5 26.7 20.1 1.8 24.4 -2.3 16.9 13.0 9,357 67.6 75.0 1.8 2.9 21.0 23.5 25.6 26.0 32.2 25.0 1.8 29.6 -2.6 19.3 13.2 9,496 67.2 75.2 1.8 18 3.9 28.5 15.6 29 1.8 18.4 2.8 20.8 7.0 3,670 18.3 32 1.8 12.9 2.9 21.3 6.8 3,407 2 1.8 9.5 -2.5 18.2 12.8 26.7 18.3 32 1.8 12.9 2.9 21.3 6.8 3,407 2 1.8 9.5 -2.5 18.2 12.8 26.7 18.3 32 1.8 18.4 2.8 20.8 7.0 3,670 18.3 32 1.8 18.4 2.8 20.8 7.0 3,670 18.3 32 1.8 18.4 2.8 20.8 7.0 3,670 23.9 38 1.8 23.8 2.7 20.1 7.1 3,979 23.9 38 1.8 20.6 2.7 19.8 7.2 4,148 29.4 43 1.8 29.4 2.7 19.4 7.4 4,333 4 1.8 9.8 -2.2 15.9 29.4 43 1.8 29.4 2.7 19.4 7.4 4,333 4 1.8 9.9 -2.1 15.4 29.4 43 1.8 18.8 32.0 2.6 19.0 7.5 4,533 12.0 14.8 10.0 -2.0 14.8									,							4.90
32.2 24.4 1.8 28.9 -3.3 24.6 11.7 7,932 55.6 64.2 1.8 4.4 32.3 10.0 5.3 1.8 8.7 -1.3 9.8 12.5 9,014 68.6 74.3 1.8 2.6 18.6 15.6 10.2 1.8 13.9 -1.7 12.1 12.7 9,124 68.2 74.6 1.8 2.9 21.0 21.1 15.2 1.8 19.2 -1.9 14.5 12.8 9,235 67.9 74.8 1.8 71 3.2 23.5 26.7 20.1 1.8 24.4 -2.3 16.9 13.0 9,357 67.6 75.0 1.8 3.6 26.0 32.2 25.0 1.8 29.6 -2.6 19.3 13.2 9,496 67.2 75.2 1.8 71 3.2 23.5 3.9 28.5 12.8 26 1.8 12.9 2.9 21.3 6.8 3,407 [°C] (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C)	(5)	32.2	23.9	1.8		-4.2	30.6	10.7	6,762	43.8	53.7	1.8		5.1	37.2	5.50
32.2 24.4 1.8 28.9 -3.3 24.6 11.7 7,932 55.6 64.2 1.8 4.4 32.3 10.0 5.3 1.8 8.7 -1.3 9.8 12.5 9,014 68.6 74.3 1.8 2.6 18.6 15.6 10.2 1.8 13.9 -1.7 12.1 12.7 9,124 68.2 74.6 1.8 2.9 21.0 21.1 15.2 1.8 19.2 -1.9 14.5 12.8 9,235 67.9 74.8 1.8 71 3.2 23.5 26.7 20.1 1.8 24.4 -2.3 16.9 13.0 9,357 67.6 75.0 1.8 3.6 26.0 32.2 25.0 1.8 29.6 -2.6 19.3 13.2 9,496 67.2 75.2 1.8 71 3.2 23.5 3.9 28.5 18 12.9 2.9 21.3 6.8 3,407 (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C)	Ž	10.0				-1.7	12.4	11.0	,							2.62
32.2 24.4 1.8 28.9 -3.3 24.6 11.7 7,932 55.6 64.2 1.8 4.4 32.3 10.0 5.3 1.8 8.7 -1.3 9.8 12.5 9,014 68.6 74.3 1.8 2.6 18.6 15.6 10.2 1.8 13.9 -1.7 12.1 12.7 9,124 68.2 74.6 1.8 2.9 21.0 21.1 15.2 1.8 19.2 -1.9 14.5 12.8 9,235 67.9 74.8 1.8 71 3.2 23.5 26.7 20.1 1.8 24.4 -2.3 16.9 13.0 9,357 67.6 75.0 1.8 3.6 26.0 32.2 25.0 1.8 29.6 -2.6 19.3 13.2 9,496 67.2 75.2 1.8 71 3.2 23.5 3.9 28.5 18 12.9 2.9 21.3 6.8 3,407 (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C)	I E I								,							2.98
32.2 24.4 1.8 28.9 -3.3 24.6 11.7 7,932 55.6 64.2 1.8 4.4 32.3 10.0 5.3 1.8 8.7 -1.3 9.8 12.5 9,014 68.6 74.3 1.8 2.6 18.6 15.6 10.2 1.8 13.9 -1.7 12.1 12.7 9,124 68.2 74.6 1.8 2.9 21.0 21.1 15.2 1.8 19.2 -1.9 14.5 12.8 9,235 67.9 74.8 1.8 71 3.2 23.5 26.7 20.1 1.8 24.4 -2.3 16.9 13.0 9,357 67.6 75.0 1.8 3.6 26.0 32.2 25.0 1.8 29.6 -2.6 19.3 13.2 9,496 67.2 75.2 1.8 71 3.2 23.5 3.9 28.5 12.8 26 1.8 12.9 2.9 21.3 6.8 3,407 [°C] (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C)	1 5								,				60			3.33
10.0 5.3 1.8 8.7 -1.3 9.8 12.5 9.014 68.6 74.3 1.8 2.6 18.6 15.6 10.2 1.8 13.9 -1.7 12.1 12.7 9.124 68.2 74.6 1.8 2.9 21.0 21.1 15.2 1.8 19.2 -1.9 14.5 12.8 9.235 67.9 74.8 1.8 71 3.2 23.5 26.7 20.1 1.8 24.4 -2.3 16.9 13.0 9.357 67.6 75.0 1.8 3.6 26.0 32.2 25.0 1.8 29.6 -2.6 19.3 13.2 9.496 67.2 75.2 1.8 3.6 26.0 3.9 28.5	=								,							3.70
15.6 10.2 1.8 13.9 -1.7 12.1 12.7 9,124 68.2 74.6 1.8 71 3.2 23.5 22.1 15.2 1.8 19.2 -1.9 14.5 12.8 9,235 67.9 74.8 1.8 74 3.2 23.5 26.7 20.1 1.8 24.4 -2.3 16.9 13.0 9,357 67.6 75.0 1.8 3.6 26.0 32.2 25.0 1.8 29.6 -2.6 19.3 13.2 9,496 67.2 75.2 1.8																4.07
21.1 15.2 1.8 19.2 -1.9 14.5 12.8 9,235 67.9 74.8 1.8 71 3.2 23.5 26.7 20.1 1.8 24.4 -2.3 16.9 13.0 9,357 67.6 75.0 1.8 3.6 26.0 3.2 25.0 1.8 29.6 -2.6 19.3 13.2 9,496 67.2 75.2 1.8 3.9 28.5 ELT Cond. Flow LLT Compressor Current (A) Power (W) Current (A) Powe									,							2.07
26.7 20.1 1.8 24.4 -2.3 16.9 13.0 9,357 67.6 75.0 1.8 3.6 26.0 32.2 25.0 1.8 29.6 -2.6 19.3 13.2 9,496 67.2 75.2 1.8 ELT Cond. Flow LLT Delta T Heat Rej. (°C)			_						,		-	-			_	2.31
32.2 25.0 1.8 29.6 -2.6 19.3 13.2 9,496 67.2 75.2 1.8 3.9 28.5 ELT Cond. (°C) Flow (L/s) (°C) (°C) (W) Current (A) Power (W) (°C) Temp. (L/s) (°C) (°C) (W) Current (A) Power (W) (°C) Temp. (L/s) (°C) (°C) (°C) (W) (W) Current (A) Power (W) (°C) Temp. (L/s) (°C) (°C) (°C) (°C) (W) (W) (°C) Temp. (L/s) (°C) (°C)									,				71			2.55
ELT Cond. (°C) Temp. (L/s) (°C) (°C) (W) Current (A) [†] Power (W) (°C) Evap. Temp. (L/s) (°C) (°C) (W) Current (A) [†] Power (W) (°C) Evap. Temp. (L/s) (°C) (°C) (W) (W) (W) (U) (V) (V) (V) (V) (V) (V) (V) (V) (V) (V									,							2.78
(°C) Temp. (L/s) (°C) (°C) (W) Current (A) [†] Power (W) (°C) Temp. (L/s) (°C) (°C) (W) 10.0 23 1.8 12.9 2.9 21.3 6.8 3,407 12.8 26 1.8 15.6 2.8 21.0 6.9 3,535 15.6 29 1.8 18.4 2.8 20.8 7.0 3,670 18.3 32 1.8 21.1 2.8 20.5 7.0 3,820 21.1 35 1.8 23.8 2.7 20.1 7.1 3,979 23.9 38 1.8 26.6 2.7 19.8 7.2 4,148 26.7 40 1.8 29.4 2.7 19.4 7.4 4,333 29.4 43 1.8 32.0 2.6 19.0 7.5 4,533	Ш	32.2	25.0	1.8	29.6	-2.6	19.3	13.2	9,496	67.2	75.2	1.8		3.9	28.5	3.01
10.0 23 1.8 12.9 2.9 21.3 6.8 3,407 12.8 26 1.8 15.6 2.8 21.0 6.9 3,535 15.6 29 1.8 18.4 2.8 20.8 7.0 3,670 18.3 32 1.8 21.1 2.8 20.5 7.0 3,820 21.1 35 1.8 23.8 2.7 20.1 7.1 3,979 23.9 38 1.8 26.6 2.7 19.8 7.2 4,148 26.7 40 1.8 29.4 2.7 19.4 7.4 4,333 29.4 43 1.8 32.0 2.6 19.0 7.5 4,533 2 1.8 9.5 -2.5 18.2 2 1.8 9.6 -2.4 17.8 3 1.8 9.6 -2.4 17.4 3 1.8 9.7 -2.3 16.9 3 1.8 9.8 -2.2 15.9 4 1.8 9.9 -2.1 15.4				-								_				COPc
15.6 29 1.8 18.4 2.8 20.8 7.0 3,670 18.3 32 1.8 21.1 2.8 20.5 7.0 3,820 21.1 35 1.8 23.8 2.7 20.1 7.1 3,979 23.9 38 1.8 26.6 2.7 19.8 7.2 4,148 26.7 40 1.8 29.4 2.7 19.4 7.4 4,333 29.4 43 1.8 32.0 2.6 19.0 7.5 4,533 18 9.6 -2.4 17.4 3 1.8 9.6 -2.4 17.4 3 1.8 9.8 -2.2 16.4 3 1.8 9.8 -2.2 15.9 4 1.8 9.9 -2.1 15.4		10.0	23	1.8	12.9		21.3		3,407		2	1.8		-2.5	18.2	5.36
15.6 29 1.8 18.4 2.8 20.8 7.0 3,670 18.3 32 1.8 21.1 2.8 20.5 7.0 3,820 21.1 35 1.8 23.8 2.7 20.1 7.1 3,979 23.9 38 1.8 26.6 2.7 19.8 7.2 4,148 26.7 40 1.8 29.4 2.7 19.4 7.4 4,333 29.4 43 1.8 32.0 2.6 19.0 7.5 4,533 18 9.6 -2.4 17.4 3 1.8 9.6 -2.4 17.4 3 1.8 9.8 -2.2 16.4 3 1.8 9.8 -2.2 15.9 4 1.8 9.9 -2.1 15.4		12.8	26	1.8	15.6	2.8	21.0	6.9	3,535	•	2	1.8	9.6	-2.4	17.8	5.04
26.7 40 1.8 29.4 2.7 19.4 7.4 4,333 4 1.8 9.9 -2.1 15.4 29.4 43 1.8 32.0 2.6 19.0 7.5 4,533 4 1.8 10.0 -2.0 14.8	9	15.6	29	1.8	18.4	2.8	20.8	7.0	3,670		3	1.8	9.6	-2.4	17.4	4.75
26.7 40 1.8 29.4 2.7 19.4 7.4 4,333 4 1.8 9.9 -2.1 15.4 29.4 43 1.8 32.0 2.6 19.0 7.5 4,533 4 1.8 10.0 -2.0 14.8		18.3	32	1.8	21.1	2.8	20.5	7.0	3,820		3	1.8	9.7	-2.3	16.9	4.43
26.7 40 1.8 29.4 2.7 19.4 7.4 4,333 4 1.8 9.9 -2.1 15.4 29.4 43 1.8 32.0 2.6 19.0 7.5 4,533 4 1.8 10.0 -2.0 14.8	0	21.1	35	1.8	23.8	2.7	20.1	7.1	3,979	12.0	3	1.8	9.8	-2.2	16.4	4.13
26.7 40 1.8 29.4 2.7 19.4 7.4 4,333 4 1.8 9.9 -2.1 15.4 29.4 43 1.8 32.0 2.6 19.0 7.5 4,533 4 1.8 10.0 -2.0 14.8	30	23.9	38	1.8	26.6	2.7	19.8	7.2	4,148	12.0	3	1.8	9.8	-2.2	15.9	3.84
		26.7	40	1.8	29.4	2.7	19.4	7.4	4,333		4	1.8	9.9	-2.1	15.4	3.55
22 46 40 240 26 407 77 4742 4 40 404 40 442		29.4	43	1.8	32.0	2.6	19.0	7.5	4,533		4	1.8	10.0	-2.0	14.8	3.25
		32.2	46	1.8	34.8	2.6	18.7	7.7	4,742		4	1.8	10.1	-1.9	14.2	2.99
35.0 49 1.8 37.5 2.5 18.3 7.8 4,971 5 1.8 10.1 -1.9 13.6		35.0	49	1.8	37.5	2.5	18.3	7.8	4,971		5	1.8	10.1	-1.9	13.6	2.73

WH-120-H**-Y-*S-P* R513a, 60 Hz, ZH50KCE-TFD (460-3-60)

- * Cooling via reversing models (-HAC), or switching indoor/outdoor
 ** Lower cooling mode outdoor loop ELT's may require flow control

 † Compressor current is for 460-3-60.
 [Multiply by 2.2 for 208-3-60, by 0.8 for 575-3-60.]

		OU	TDOOR I	OOP (W	/ater)		ELECTI	RICAL			INDOO	R LOOP	(Water)		
	ELT (°F)	Evap. Temp.	Flow (gpm)	LLT (°F)	Delta T (°F)	Heat Abs. (Btu/hr)	Compressor Current (A)	Input Power (W)	EWT (°F)	Cond. Temp.	Flow (gpm)	LWT (°F)	Delta T (°F)	Heating (Btu/hr)	СОРн
	50	40	30	46	-4.2	63,900	12.1	6,793	114	126	30		5.8	86,800	3.74
•	60	48	30	55	-5.2	77,300	12.5	7,028	113	126	30		6.8	101,100	4.22
	70	57	30	64	-6.2	92,800	12.9	7,274	112	126	30	120	7.9	117,400	4.73
	80	65	30	73	-7.4	110,900	13.3	7,548	111	127	30		9.2	136,400	5.30
4B	90	74	30	81	-8.8	131,900	13.8	7,866	109	127	30		10.7	158,500	5.91
HEATING	50	41	30	46	-3.7	55,700	13.4	8,204	134	145	30		5.6	83,500	2.98
F	60	50	30	56	-4.5	67,300	13.8	8,467	134	146	30		6.5	96,000	3.32
₹	70	58	30	65	-5.4	80,400	14.2	8,716	133	146	30	140	7.4	109,900	3.70
Ŧ	80	67	30	74	-6.4	95,500	14.6	8,986	132	146	30		8.5	125,900	4.11
	90	75	30	82	-7.6	112,700	15.1	9,274	130	146	30		9.7	144,100	4.55
	50	42	30	47	-3.1	46,200	14.8	9,700	155	166	30		5.4	79,100	2.39
	60	51	30	56	-3.7	56,200	15.3	10,013	154	166	30		6.1	90,100	2.64
	70	60	30	66	-4.5	67,100	15.7	10,320	153	166	30	160	6.9	102,100	2.90
	80	68	30	75	-5.3	79,300	16.2	10,612	152	167	30		7.8	115,300	3.18
•	90	77	30	84	-6.3	93,300	16.7	10,914	151	167	30		8.8	130,300	3.50
	Ī														
	ELT	Cond.	Flow	LLT	Delta T	Heat Rej.	Compressor	Input	EWT	Evap.	Flow	LWT	Delta T	Cooling	EER
	(°F)	Temp.	(gpm)	(°F)	(°F)	(Btu/hr)	Current (A) [†]	Power (W)	(°F)	Temp.	(gpm)	(°F)	(°F)	(Btu/hr)	
	50	74	30	57	6.7	101,200	9.0	3,784		35	30	48	-5.9	88,700	23.4
#	55	79	30	62	6.7	100,500	9.5	4,087		36	30	48	-5.8	86,900	21.3
Ž	60	84	30	67	6.6	99,600	9.9	4,419		37	30	48	-5.7	84,900	19.2
COOLING	65	89	30	72	6.6	98,800	10.4	4,777		37	30	48	-5.5	82,900	17.4
9	70	95	30	77	6.6	98,100	10.9	5,170	54	38	30	48	-5.4	80,800	15.6
8	75	100	30	82	6.5	97,400	11.4	5,591	J4	38	30	48	-5.3	78,700	14.1
	80	105	30	87	6.5	96,700	12.0	6,053		39	30	49	-5.1	76,400	12.6
	85	110	30	91	6.4	96,200	12.6	6,547		39	30	49	-5.0	74,200	11.3
	90	116	30	96	6.4	95,600	13.3	7,089		40	30	49	-4.8	71,700	10.1
	95	121	30	101	6.4	95.100	14.0	7.668		40	30	49	-4.6	69.300	9.0

		OU	TDOOR I	LOOP (W	/ater)		ELECTI	RICAL			INDOO	R LOOP	(Water)		
	ELT (°C)	Evap. Temp.	Flow (L/s)	LLT (°C)	Delta T (°C)	Heat Abs. (kW)	Compressor Current (A)	Input Power (W)	EWT (°C)	Cond. Temp.	Flow (L/s)	LWT (°C)	Delta T (°C)	Heating (kW)	СОРн
	10.0	4.2	1.9	7.7	-2.3	18.7	12.1	6,793	45.7	52.1	1.9		3.2	25.4	3.74
	15.6	8.9	1.9	12.7	-2.9	22.7	12.5	7,028	45.1	52.2	1.9		3.8	29.6	4.22
	21.1	13.7	1.9	17.7	-3.4	27.2	12.9	7,274	44.5	52.4	1.9	49	4.4	34.4	4.73
	26.7	18.4	1.9	22.6	-4.1	32.5	13.3	7,548	43.8	52.6	1.9		5.1	40.0	5.30
(5)	32.2	23.1	1.9	27.3	-4.9	38.7	13.8	7,866	42.9	52.7	1.9		5.9	46.5	5.91
HEATING	10.0	4.9	1.9	7.9	-2.1	16.3	13.4	8,204	56.9	63.0	1.9		3.1	24.5	2.98
Œ	15.6	9.7	1.9	13.1	-2.5	19.7	13.8	8,467	56.4	63.2	1.9		3.6	28.1	3.32
5	21.1	14.4	1.9	18.1	-3.0	23.6	14.2	8,716	55.9	63.3	1.9	60	4.1	32.2	3.70
王	26.7	19.2	1.9	23.1	-3.6	28.0	14.6	8,986	55.3	63.4	1.9		4.7	36.9	4.11
	32.2	23.9	1.9	28.0	-4.2	33.0	15.1	9,274	54.6	63.6	1.9		5.4	42.2	4.55
	10.0	5.6	1.9	8.3	-1.7	13.5	14.8	9,700	68.1	74.2	1.9		3.0	23.2	2.39
	15.6	10.4	1.9	13.5	-2.1	16.5	15.3	10,013	67.7	74.4	1.9	- 74	3.4	26.4	2.64
	21.1	15.3	1.9	18.6	-2.5	19.7	15.7	10,320	67.3	74.6	1.9	71	3.8	29.9	2.90
	26.7	20.1	1.9	23.8	-2.9	23.2	16.2	10,612	66.8	74.8	1.9		4.3	33.8	3.18
	32.2	24.9	1.9	28.7	-3.5	27.3	16.7	10,914	66.2	74.9	1.9		4.9	38.2	3.50
	ELT (°C)	Cond. Temp.	Flow (L/s)	LLT (°C)	Delta T (°C)	Heat Rej. (W)	Compressor Current (A)	Input Power (W)	EWT (°C)	Evap. Temp.	Flow (L/s)	LWT (°C)	Delta T (°C)	Cooling (W)	COPc
	10.0	23	1.9	13.7	3.7	29.7	9.0	3,784		2	1.9	8.7	-3.3	26.0	6.86
*	12.8	26	1.9	16.5	3.7	29.5	9.5	4,087		2	1.9	8.8	-3.2	25.5	6.24
<u> </u>	15.6	29	1.9	19.3	3.7	29.2	9.9	4,419		3	1.9	8.8	-3.2	24.9	5.63
COOLING	18.3	32	1.9	22.0	3.7	29.0	10.4	4,777		3	1.9	8.9	-3.1	24.3	5.10
0	21.1	35	1.9	24.8	3.7	28.8	10.9	5,170	12.0	3	1.9	9.0	-3.0	23.7	4.57
9	23.9	38	1.9	27.5	3.6	28.5	11.4	5,591	12.0	3	1.9	9.1	-2.9	23.1	4.13
_	26.7	41	1.9	30.3	3.6	28.3	12.0	6,053		4	1.9	9.2	-2.8	22.4	3.69
	29.4	43	1.9	33.0	3.6	28.2	12.6	6,547		4	1.9	9.2	-2.8	21.7	3.31
	32.2	46	1.9	35.8	3.6	28.0	13.3	7,089		4	1.9	9.3	-2.7	21.0	2.96
	35.0	49	1.9	38.6	3.6	27.9	14.0	7,668		5	1.9	9.4	-2.6	20.3	2.64
10011															

WH-140-H**-Y-*S-P* R513a, 60 Hz, ZH64KCE-TED (460-3-60)

- * Cooling via reversing models (-HAC), or switching indoor/outdoor
 ** Lower cooling mode outdoor loop ELT's may require flow control

 † Compressor current is for 460-3-60.
 [Multiply by 2.2 for 208-3-60, by 0.8 for 575-3-60.]

		OU.	TDOOR I	OOP (W	'ater)		ELECTI	RICAL			INDOO	R LOOP	(Water)		
	ELT (°F)	Evap. Temp.	Flow (gpm)	LLT (°F)	Delta T (°F)	Heat Abs. (Btu/hr)	Compressor Current (A)	Input Power (W)	EWT (°F)	Cond. Temp.	Flow (gpm)	LWT (°F)	Delta T (°F)	Heating (Btu/hr)	СОРн
	50	40	34	45	-4.6	78,500	14.0	8,366	114	126	34		6.3	106,700	3.74
	60	48	34	54	-5.6	95,400	14.5	8,668	113	126	34		7.4	124,700	4.22
	70	57	34	63	-6.8	115,000	15.0	8,999	111	126	34	120	8.6	145,400	4.74
	80	65	34	72	-8.1	137,800	15.5	9,375	110	126	34		10.1	169,500	5.30
40	90	74	34	80	-9.7	164,100	16.2	9,816	108	127	34		11.7	197,300	5.89
HEATING	50	41	34	46	-4.0	68,500	15.8	10,077	134	145	34		6.1	102,600	2.98
E	60	50	34	55	-4.9	83,100	16.3	10,401	133	146	34		7.1	118,300	3.33
4	70	58	34	64	-5.9	99,500	16.8	10,735	132	146	34	140	8.1	135,800	3.71
Ĭ	80	67	34	73	-7.0	118,500	17.4	11,120	131	146	34		9.3	156,100	4.11
	90	75	34	82	-8.3	140,100	18.0	11,550	129	146	34		10.7	179,200	4.55
	50	42	34	47	-3.3	56,600	17.7	11,953	154	165	34		5.8	97,100	2.38
	60	51	34	56	-4.1	69,100	18.3	12,326	153	166	34		6.6	110,800	2.63
	70	60	34	65	-4.9	82,800	18.9	12,726	153	166	34	160	7.5	125,900	2.90
	80	68	34	74	-5.8	98,300	19.5	13,144	151	166	34		8.6	142,800	3.18
	90	77	34	83	-6.9	116,000	20.2	13,610	150	167	34		9.7	162,100	3.49
		0 1			- · ·		Compressor			-			- · ·		
	ELT	Cond.	Flow	LLT	Delta T	Heat Rej.	Compressor	Input	EWT	Evap.	Flow	LWT	Delta T	Cooling	EER
	(°F)	Temp.	(gpm)	(°F)	(°F)	(Btu/hr)	Current (A) ^T	Power (W)	(°F)	Temp.	(gpm)	(°F)	(°F)	(Btu/hr)	
	50	73	34	57	7.3	123,600	10.1	4,589		36	34	47	-6.4	108,400	23.6
*	55	79	34	62	7.2	123,100	10.6	5,012		36	34	47	-6.3	106,500	21.2
Ž	60	84	34	67	7.2	122,500	11.2	5,463		37	34	48	-6.1	104,300	19.1
COOLING	65	89	34	72	7.2	122,100	11.8	5,936		37	34	48	-6.0	102,300	17.2
2	70	94	34	77	7.2	121,500	12.4	6,445	54	38	34	48	- 5.9	99,900	15.5
8	75	100	34	82	7.1	121,000	13.1	6,982	0.	38	34	48	- 5.7	97,600	14.0
	80	105	34	87	7.1	120,400	13.8	7,565		39	34	48	-5.6	95,000	12.6
	85	110	34	92	7.1	120,000	14.6	8,185		39	34	48	-5.4	92,500	11.3
	90	115	34	97	7.1	119,500	15.5	8,861		40	34	48	-5.3	89,700	10.1
	95	121	34	102	7.1	119,300	16.4	9,584		41	34	49	-5.1	87,000	9.1

ELT	-													
(°C)	Evap. Temp.	Flow (L/s)	LLT (°C)	Delta T (°C)	Heat Abs. (kW)	Compressor Current (A)	Input Power (W)	EWT (°C)	Cond. Temp.	Flow (L/s)	LWT (°C)	Delta T (°C)	Heating (kW)	СОРн
10.0	4.3	2.1	7.4	-2.6	23.0	14.0	8,366	45.4	51.9	2.1		3.5	31.3	3.74
15.6	9.1	2.1	12.5	-3.1	28.0	14.5	8,668	44.8	52.1	2.1		4.1	36.6	4.22
21.1	13.8	2.1	17.3	-3.8	33.7	15.0	8,999	44.1	52.3	2.1	49	4.8	42.6	4.74
26.7	18.5	2.1	22.2	-4.5	40.4	15.5	9,375	43.3	52.4	2.1		5.6	49.7	5.30
32.2	23.2	2.1	26.8	-5.4	48.1	16.2	9,816	42.4	52.6	2.1		6.5	57.8	5.89
10.0	5.1	2.1	7.8	-2.2	20.1	15.8	10,077	56.6	62.9	2.1		3.4	30.1	2.98
15.6	9.8	2.1	12.9	-2.7	24.4	16.3	10,401	56.1	63.1	2.1		3.9	34.7	3.33
21.1	14.6	2.1	17.8	-3.3	29.2	16.8	10,735	55.5	63.2	2.1	60	4.5	39.8	3.71
26.7	19.3	2.1	22.8	-3.9	34.7	17.4	11,120	54.8	63.3	2.1		5.2	45.8	4.11
32.2	24.1	2.1	27.6	-4.6	41.1	18.0	11,550	54.1	63.4	2.1		5.9	52.5	4.55
10.0	5.7	2.1	8.2	-1.8	16.6	17.7	11,953	67.9	74.1	2.1		3.2	28.5	2.38
15.6	10.6	2.1	13.3	-2.3	20.3	18.3	12,326	67.4	74.3	2.1	74	3.7	32.5	2.63
21.1	15.4	2.1	18.4	-2.7	24.3	18.9	12,726	66.9	74.5	2.1	71	4.2	36.9	2.90
26.7	20.2	2.1	23.5	-3.2	28.8	19.5	13,144	66.3	74.7	2.1		4.8	41.9	3.18
32.2	25.0	2.1	28.4	-3.8	34.0	20.2	13,610	65.7	74.8	2.1		5.4	47.5	3.49
ELT (°C)	Cond. Temp.	Flow (L/s)	LLT (°C)	Delta T (°C)	Heat Rej. (W)	Compressor Current (A)	Input Power (W)	EWT (°C)	Evap. Temp.	Flow (L/s)	LWT (°C)	Delta T (°C)	Cooling (W)	COPc
10.0	23	2.1	14.1	4.1	36.2	10.1	4,589		2	2.1	8.4	-3.6	31.8	6.92
12.8	26	2.1	16.8	4.0	36.1	10.6	5,012		2	2.1	8.5	-3.5	31.2	6.21
15.6	29	2.1	19.6	4.0	35.9	11.2	5,463		3	2.1	8.6	-3.4	30.6	5.60
18.3	32	2.1	22.3	4.0	35.8	11.8	5,936		3	2.1	8.7	-3.3	30.0	5.04
21.1	35	2.1	25.1	4.0	35.6	12.4	6,445	12.0	3	2.1	8.7	-3.3	29.3	4.54
23.9	38	2.1	27.8	3.9	35.5	13.1	6,982	12.0	4	2.1	8.8	-3.2	28.6	4.10
26.7	41	2.1	30.6	3.9	35.3	13.8	7,565		4	2.1	8.9	-3.1	27.8	3.69
29.4	43	2.1	33.3	3.9	35.2	14.6	8,185		4	2.1	9.0	-3.0	27.1	3.31
32.2	46	2.1	36.1	3.9	35.0	15.5	8,861		4	2.1	9.1	-2.9	26.3	2.96
	49	2.1	38.9	3.9	35.0	16.4	9,584		5	2.1	9.2	-2.8	25.5	2.67
	10.0 15.6 21.1 26.7 32.2 10.0 15.6 21.1 26.7 32.2 10.0 15.6 21.1 26.7 32.2 10.0 15.6 21.1 26.7 32.2 10.0 15.6 21.1 26.7 32.2 10.0 15.6 21.1 26.7 32.2 10.0 15.6 21.1 26.7 32.2 10.0 15.6 21.1 26.7 32.2 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1	10.0 4.3 15.6 9.1 21.1 13.8 26.7 18.5 32.2 23.2 10.0 5.1 15.6 9.8 21.1 14.6 26.7 19.3 32.2 24.1 10.0 5.7 15.6 10.6 21.1 15.4 26.7 20.2 32.2 25.0 ELT Cond. (°C) Temp. 10.0 23 12.8 26 15.6 29 18.3 32 21.1 35 23.9 38 26.7 41 29.4 43	10.0 4.3 2.1 15.6 9.1 2.1 21.1 13.8 2.1 26.7 18.5 2.1 32.2 23.2 2.1 10.0 5.1 2.1 15.6 9.8 2.1 21.1 14.6 2.1 26.7 19.3 2.1 32.2 24.1 2.1 10.0 5.7 2.1 15.6 10.6 2.1 21.1 15.4 2.1 26.7 20.2 2.1 32.2 25.0 2.1 ELT Cond. Flow (°C) Temp. (L/s) 10.0 23 2.1 12.8 26 2.1 15.6 29 2.1 18.3 32 2.1 21.1 35 2.1 23.9 38 2.1 23.9 38 2.1 29.4 43 2.1	10.0 4.3 2.1 7.4 15.6 9.1 2.1 12.5 21.1 13.8 2.1 17.3 26.7 18.5 2.1 22.2 32.2 23.2 2.1 26.8 10.0 5.1 2.1 7.8 15.6 9.8 2.1 12.9 21.1 14.6 2.1 17.8 26.7 19.3 2.1 22.8 32.2 24.1 2.1 27.6 10.0 5.7 2.1 8.2 15.6 10.6 2.1 13.3 21.1 15.4 2.1 18.4 26.7 20.2 2.1 23.5 32.2 25.0 2.1 28.4 ELT Cond. Flow LLT (°C) Temp. (L/s) (°C) 10.0 23 2.1 14.1 12.8 26 2.1 16.8 15.6	10.0 4.3 2.1 7.4 -2.6 15.6 9.1 2.1 12.5 -3.1 21.1 13.8 2.1 17.3 -3.8 26.7 18.5 2.1 22.2 -4.5 32.2 23.2 2.1 26.8 -5.4 10.0 5.1 2.1 7.8 -2.2 15.6 9.8 2.1 12.9 -2.7 21.1 14.6 2.1 17.8 -3.3 26.7 19.3 2.1 22.8 -3.9 32.2 24.1 2.1 27.6 -4.6 10.0 5.7 2.1 8.2 -1.8 15.6 10.6 2.1 13.3 -2.3 21.1 15.4 2.1 18.4 -2.7 26.7 20.2 2.1 23.5 -3.2 32.2 25.0 2.1 28.4 -3.8 ELT Cond. Flow LLT Delta T (°C) </td <td>10.0 4.3 2.1 7.4 -2.6 23.0 15.6 9.1 2.1 12.5 -3.1 28.0 21.1 13.8 2.1 17.3 -3.8 33.7 26.7 18.5 2.1 22.2 -4.5 40.4 32.2 23.2 2.1 26.8 -5.4 48.1 10.0 5.1 2.1 7.8 -2.2 20.1 15.6 9.8 2.1 12.9 -2.7 24.4 21.1 14.6 2.1 17.8 -3.3 29.2 26.7 19.3 2.1 22.8 -3.9 34.7 32.2 24.1 2.1 27.6 -4.6 41.1 10.0 5.7 2.1 8.2 -1.8 16.6 15.6 10.6 2.1 13.3 -2.3 20.3 21.1 15.4 2.1 18.4 -2.7 24.3 26.7 20.2 2.1 28.4</td> <td>10.0 4.3 2.1 7.4 -2.6 23.0 14.0 15.6 9.1 2.1 12.5 -3.1 28.0 14.5 21.1 13.8 2.1 17.3 -3.8 33.7 15.0 26.7 18.5 2.1 22.2 -4.5 40.4 15.5 32.2 23.2 2.1 26.8 -5.4 48.1 16.2 10.0 5.1 2.1 7.8 -2.2 20.1 15.8 15.6 9.8 2.1 12.9 -2.7 24.4 16.3 21.1 14.6 2.1 17.8 -3.3 29.2 16.8 26.7 19.3 2.1 22.8 -3.9 34.7 17.4 32.2 24.1 2.1 27.6 -4.6 41.1 18.0 10.0 5.7 2.1 8.2 -1.8 16.6 17.7 15.6 10.6 2.1 13.3 -2.3 20.3 18.3<td>10.0</td><td>10.0</td><td> 10.0</td><td> 10.0</td><td> 10.0</td><td> 10.0</td><td> 10.0</td></td>	10.0 4.3 2.1 7.4 -2.6 23.0 15.6 9.1 2.1 12.5 -3.1 28.0 21.1 13.8 2.1 17.3 -3.8 33.7 26.7 18.5 2.1 22.2 -4.5 40.4 32.2 23.2 2.1 26.8 -5.4 48.1 10.0 5.1 2.1 7.8 -2.2 20.1 15.6 9.8 2.1 12.9 -2.7 24.4 21.1 14.6 2.1 17.8 -3.3 29.2 26.7 19.3 2.1 22.8 -3.9 34.7 32.2 24.1 2.1 27.6 -4.6 41.1 10.0 5.7 2.1 8.2 -1.8 16.6 15.6 10.6 2.1 13.3 -2.3 20.3 21.1 15.4 2.1 18.4 -2.7 24.3 26.7 20.2 2.1 28.4	10.0 4.3 2.1 7.4 -2.6 23.0 14.0 15.6 9.1 2.1 12.5 -3.1 28.0 14.5 21.1 13.8 2.1 17.3 -3.8 33.7 15.0 26.7 18.5 2.1 22.2 -4.5 40.4 15.5 32.2 23.2 2.1 26.8 -5.4 48.1 16.2 10.0 5.1 2.1 7.8 -2.2 20.1 15.8 15.6 9.8 2.1 12.9 -2.7 24.4 16.3 21.1 14.6 2.1 17.8 -3.3 29.2 16.8 26.7 19.3 2.1 22.8 -3.9 34.7 17.4 32.2 24.1 2.1 27.6 -4.6 41.1 18.0 10.0 5.7 2.1 8.2 -1.8 16.6 17.7 15.6 10.6 2.1 13.3 -2.3 20.3 18.3 <td>10.0</td> <td>10.0</td> <td> 10.0</td> <td> 10.0</td> <td> 10.0</td> <td> 10.0</td> <td> 10.0</td>	10.0	10.0	10.0	10.0	10.0	10.0	10.0

WH-180-H**-Y-*S-P* R513a, 60 Hz, ZH76KCE-TED (460-3-60)

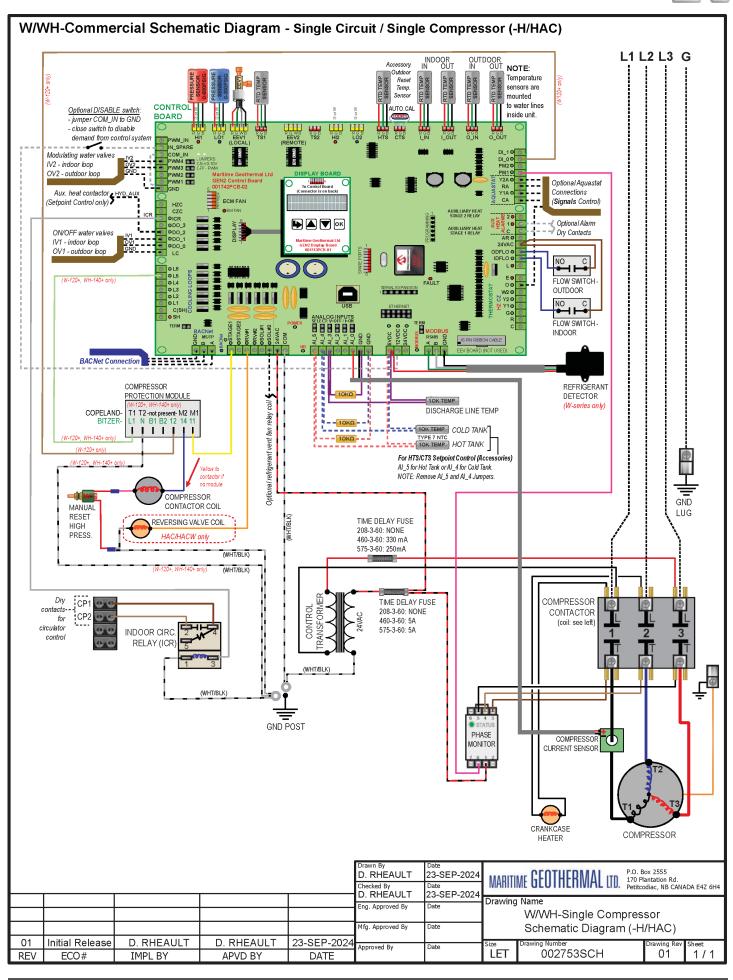
- * Cooling via reversing models (-HAC), or switching indoor/outdoor
 ** Lower cooling mode outdoor loop ELT's may require flow control

 † Compressor current is for 460-3-60.
 [Multiply by 2.2 for 208-3-60, by 0.8 for 575-3-60.]

		OU.	TDOOR I	OOP (N	/ater)		ELECT	RICAL				R LOOP	(Water)		
	ELT (°F)	Evap. Temp.	Flow (gpm)	LLT (°F)	Delta T (°F)	Heat Abs. (Btu/hr)	Compressor Current (A)	Input Power (W)	EWT (°F)	Cond. Temp.	Flow (gpm)	LWT (°F)	Delta T (°F)	Heating (Btu/hr)	СОРн
	50	40	48	46	-4.0	96,900	18.9	10,202	115	125	48		5.5	131,300	3.77
1	60	48	48	55	-4.9	117,500	19.5	10,556	114	126	48		6.4	153,100	4.25
	70	57	48	64	-5.9	141,300	20.1	10,959	113	126	48	120	7.5	178,300	4.77
	80	65	48	73	-7.1	168,700	20.8	11,436	111	126	48		8.7	207,300	5.31
40	90	74	48	82	-8.4	200,100	21.5	12,016	110	127	48		10.1	240,700	5.87
HEATING	50	41	48	47	-3.5	85,000	20.7	12,299	135	145	48		5.3	126,500	3.01
F	60	50	48	56	-4.3	102,700	21.2	12,597	134	145	48		6.1	145,300	3.38
< 1	70	58	48	65	-5.1	122,900	21.7	12,916	133	146	48	140	7.0	166,600	3.78
#	80	67	48	74	-6.1	146,100	22.3	13,310	132	146	48		8.1	191,100	4.21
_ [90	75	48	83	-7.2	172,400	22.9	13,774	131	146	48		9.2	219,000	4.66
	50	42	48	47	-2.9	70,200	22.9	14,659	155	165	48		5.1	119,800	2.40
	60	51	48	57	-3.5	85,200	23.4	14,968	154	166	48		5.8	135,900	2.66
	70	60	48	66	-4.3	102,100	23.9	15,317	154	166	48	160	6.5	153,900	2.94
1	80	68	48	75	-5.1	121,400	24.4	15,696	153	166	48		7.4	174,500	3.26
	90	77	48	84	-6.0	143,600	25.0	16,146	152	167	48		8.4	198,300	3.60
					1	1	C			Γ_	1		T		
	ELT	Cond.	Flow	LLT	Delta T	Heat Rej.	Compressor	Input	EWT	Evap.	Flow	LWT	Delta T	Cooling	EER
	(°F)	Temp.	(gpm)	(°F)	(°F)	(Btu/hr)	Current (A) ^T	Power (W)	(°F)	Temp.	(gpm)	(°F)	(°F)	(Btu/hr)	
	50	74	48	56	6.1	147,900	13.3	5,527		35	48	48	-5.4	129,700	23.5
*	55	79	48	61	6.1	147,000	14.0	6,011		36	48	48	-5.3	127,100	21.1
Ž	60	84	48	66	6.1	145,700	14.7	6,521		36	48	48	-5.2	124,100	19.0
COOLING*	65	89	48	71	6.0	144,500	15.4	7,049		37	48	49	-5.1	121,100	17.2
9	70	95	48	76	6.0	143,200	16.1	7,611	54	38	48	49	-4.9	117,800	15.5
8	75	100	48	81	5.9	142,000	16.9	8,200	0-1	38	48	49	-4.8	114,600	14.0
	80	105	48	86	5.9	140,600	17.8	8,835		39	48	49	-4.6	111,000	12.6
	85	110	48	91	5.8	139,500	18.7	9,504		39	48	49	-4.5	107,600	11.3
	90	116	48	96	5.8	138,000	19.7	10,230		40	48	49	-4.3	103,700	10.1
	95	121	48	101	5.7	137,000	20.7	11,002		40	48	49	-4.2	100,000	9.1

		OU.	TDOOR I	LOOP (W	/ater)		ELECTI	RICAL			INDOO	R LOOP	(Water)		
	ELT (°C)	Evap. Temp.	Flow (L/s)	LLT (°C)	Delta T (°C)	Heat Abs. (kW)	Compressor Current (A)	Input Power (W)	EWT (°C)	Cond. Temp.	Flow (L/s)	LWT (°C)	Delta T (°C)	Heating (kW)	СОРн
	10.0	4.4	3.0	7.8	-2.2	28.4	18.9	10,202	45.8	51.9	3.0		3.1	38.5	3.77
	15.6	9.1	3.0	12.9	-2.7	34.4	19.5	10,556	45.3	52.1	3.0		3.6	44.9	4.25
	21.1	13.8	3.0	17.8	-3.3	41.4	20.1	10,959	44.7	52.2	3.0	49	4.2	52.3	4.77
	26.7	18.6	3.0	22.8	-3.9	49.4	20.8	11,436	44.1	52.4	3.0		4.8	60.8	5.31
6	32.2	23.3	3.0	27.5	-4.7	58.6	21.5	12,016	43.3	52.6	3.0		5.6	70.5	5.87
HEATING	10.0	5.1	3.0	8.1	-1.9	24.9	20.7	12,299	57.1	62.8	3.0		2.9	37.1	3.01
ΙĘ	15.6	9.9	3.0	13.2	-2.4	30.1	21.2	12,597	56.6	63.0	3.0		3.4	42.6	3.38
15	21.1	14.6	3.0	18.3	-2.8	36.0	21.7	12,916	56.1	63.1	3.0	60	3.9	48.8	3.78
=	26.7	19.4	3.0	23.3	-3.4	42.8	22.3	13,310	55.5	63.3	3.0		4.5	56.0	4.21
	32.2	24.1	3.0	28.2	-4.0	50.5	22.9	13,774	54.9	63.4	3.0		5.1	64.2	4.66
	10.0	5.8	3.0	8.4	-1.6	20.6	22.9	14,659	68.3	74.1	3.0		2.8	35.1	2.40
	15.6	10.6	3.0	13.7	-1.9	25.0	23.4	14,968	67.9	74.2	3.0		3.2	39.8	2.66
	21.1	15.4	3.0	18.7	-2.4	29.9	23.9	15,317	67.5	74.4	3.0	71	3.6	45.1	2.94
	26.7	20.2	3.0	23.9	-2.8	35.6	24.4	15,696	67.0	74.6	3.0		4.1	51.1	3.26
	32.2	25.1	3.0	28.9	-3.3	42.1	25.0	16,146	66.4	74.8	3.0		4.7	58.1	3.60
	ELT	Cond.	Flow	LLT	Delta T	Heat Rej.	Compressor	Input	EWT	Evap.	Flow	LWT	Delta T	Cooling	COPc
	(°C)	Temp.	(L/s)	(°C)	(°C)	(W)	Current (A)	Power (W)	(°C)	Temp.	(L/s)	(°C)	(°C)	(W)	
	10.0	23	3.0	13.4	3.4	43.4	13.3	5,527		2	3.0	9.0	-3.0	38.0	6.89
*	12.8	26	3.0	16.2	3.4	43.1	14.0	6,011		2	3.0	9.1	-2.9	37.3	6.18
	15.6	29	3.0	19.0	3.4	42.7	14.7	6,521		2	3.0	9.1	-2.9	36.4	5.57
15	18.3	32	3.0	21.6	3.3	42.4	15.4	7,049		3	3.0	9.2	-2.8	35.5	5.04
COOLING	21.1	35	3.0	24.4	3.3	42.0	16.1	7,611	12.0	3	3.0	9.3	-2.7	34.5	4.54
3	23.9	38	3.0	27.2	3.3	41.6	16.9	8,200		3	3.0	9.3	-2.7	33.6	4.10
	26.7	41	3.0	30.0	3.3	41.2	17.8	8,835		4	3.0	9.4	-2.6	32.5	3.69
	29.4	44	3.0	32.6	3.2	40.9	18.7	9,504		4	3.0	9.5	-2.5	31.5	3.31
	32.2	46	3.0	35.4	3.2	40.4	19.7	10,230		4	3.0	9.6	-2.4	30.4	2.96
	35.0	49	3.0	38.2	3.2	40.2	20.7	11,002		5	3.0	9.7	-2.3	29.3	2.67

WH-235-H**-Y-*S-P* R513a, 60 Hz, ZH101KCE-TED (460-3-60) Cooling via reversing models (-HAC), or switching indoor/outdoor
 Lower cooling mode outdoor loop ELT's may require flow control
 Compressor current is for 460-3-60. [Multiply by 0.8 for 575-3-60.]


		OU	TDOOR I	OOP (W	/ater)		ELECTI	RICAL			INDOO	R LOOP	(Water)		
	ELT (°F)	Evap. Temp.	Flow (gpm)	LLT (°F)	Delta T (°F)	Heat Abs. (Btu/hr)	Compressor Current (A)	Input Power (W)	EWT (°F)	Cond. Temp.	Flow (gpm)	LWT (°F)	Delta T (°F)	Heating (Btu/hr)	СОРн
1	50	40	60	46	-4.2	124,900	20.8	13,366	114	126	60		5.7	169,800	3.72
	60	48	60	55	-5.0	151,500	21.4	13,824	113	126	60		6.6	197,900	4.20
	70	57	60	64	-6.1	182,400	22.1	14,323	112	126	60	120	7.7	230,500	4.72
	80	65	60	73	-7.3	218,000	22.8	14,878	111	126	60		9.0	268,000	5.28
4B	90	74	60	81	-8.7	259,000	23.7	15,509	110	127	60		10.5	311,200	5.88
HEATING	50	41	60	46	-3.7	110,200	23.2	15,739	135	145	60		5.5	163,200	3.04
F	60	50	60	56	-4.4	133,000	23.8	16,199	134	146	60		6.3	187,500	3.39
4	70	58	60	65	-5.3	159,100	24.5	16,658	133	146	60	140	7.3	215,200	3.79
Ŧ	80	67	60	74	-6.3	189,100	25.2	17,170	132	146	60		8.3	247,000	4.22
	90	75	60	83	-7.5	223,100	25.9	17,714	130	146	60		9.6	282,800	4.68
	50	42	60	47	-3.0	90,000	27.2	19,129	155	165	60		5.2	154,500	2.37
	60	51	60	56	-3.6	109,200	27.8	19,599	154	166	60		5.9	175,300	2.62
	70	60	60	66	-4.4	131,000	28.5	20,088	153	166	60	160	6.7	198,800	2.90
	80	68	60	75	-5.2	155,900	29.1	20,568	152	166	60		7.6	225,300	3.21
	90	77	60	84	-6.2	184,700	29.8	21,079	151	167	60		8.7	255,900	3.56
					5 " -		Compressor			-			- · ·		
	ELT	Cond.	Flow	LLT	Delta T	Heat Rej.	Compressor	Input	EWT	Evap.	Flow	LWT	Delta T	Cooling	EER
	(°F)	Temp.	(gpm)	(°F)	(°F)	(Btu/hr)	Current (A) ^T	Power (W)	(°F)	Temp.	(gpm)	(°F)	(°F)	(Btu/hr)	
	50	74	60	57	6.5	195,600	14.1	7,377		35	60	48	-5.7	171,400	23.2
*	55	79	60	62	6.5	194,000	14.9	7,983		36	60	48	-5.6	167,700	21.0
COOLING*	60	84	60	66	6.4	192,100	15.7	8,638		37	60	48	- 5.5	163,500	18.9
3	65	89	60	71	6.4	190,600	16.6	9,332		37	60	48	-5.3	159,600	17.1
2	70	95	60	76	6.3	188,900	17.6	10,087	54	38	60	48	-5.2	155,300	15.4
8	75	100	60	81	6.3	187,600	18.6	10,891	0-1	38	60	49	-5.1	151,200	13.9
	80	105	60	86	6.2	186,100	19.7	11,768		39	60	49	-4.9	146,600	12.5
	85	110	60	91	6.2	185,000	20.9	12,705		39	60	49	-4.8	142,300	11.2
	90	116	60	96	6.2	183,800	22.2	13,730		40	60	49	-4.6	137,500	10.0
	95	121	60	101	6.1	182,900	23.6	14,827		40	60	49	-4.4	132,900	9.0

ELT (°C) 10.0 15.6 21.1 26.7 32.2 10.0 15.6 21.1 26.7 32.2	Evap. Temp. 4.3 9.1 13.8 18.5 23.2 5.1 9.8 14.6	Flow (L/s) 3.8 3.8 3.8 3.8 3.8 3.8 3.8	LLT (°C) 7.7 12.8 17.7 22.6 27.4 7.9 13.2	Delta T (°C) -2.3 -2.8 -3.4 -4.1 -4.8	Heat Abs. (kW) 36.6 44.4 53.5 63.9 75.9	Compressor Current (A) [†] 20.8 21.4 22.1 22.8	Input Power (W) 13,366 13,824 14,323	EWT (°C) 45.7 45.2 44.6	Cond. Temp. 51.9 52.1	Flow (L/s) 3.8 3.8	LWT (°C)	Delta T (°C) 3.2 3.7	Heating (kW) 49.8 58.0	3.72 4.20
15.6 21.1 26.7 32.2 10.0 15.6 21.1 26.7	9.1 13.8 18.5 23.2 5.1 9.8 14.6	3.8 3.8 3.8 3.8 3.8 3.8	12.8 17.7 22.6 27.4 7.9	-2.8 -3.4 -4.1 -4.8	44.4 53.5 63.9	21.4 22.1	13,824	45.2	52.1					-
21.1 26.7 32.2 10.0 15.6 21.1 26.7	13.8 18.5 23.2 5.1 9.8 14.6	3.8 3.8 3.8 3.8 3.8	17.7 22.6 27.4 7.9	-3.4 -4.1 -4.8	53.5 63.9	22.1	,			3.8		3.7	58.0	4.20
26.7 32.2 10.0 15.6 21.1 26.7	18.5 23.2 5.1 9.8 14.6	3.8 3.8 3.8 3.8	22.6 27.4 7.9	-4.1 -4.8	63.9		14,323	44.0						
32.2 10.0 15.6 21.1 26.7	23.2 5.1 9.8 14.6	3.8 3.8 3.8	27.4 7.9	-4.8		22.8		44.0	52.3	3.8	49	4.3	67.6	4.72
10.0 15.6 21.1 26.7	5.1 9.8 14.6	3.8	7.9		75.9		14,878	43.9	52.4	3.8		5.0	78.5	5.28
15.6 21.1 26.7	9.8 14.6	3.8		-2.1		23.7	15,509	43.1	52.6	3.8		5.8	91.2	5.88
21.1 26.7	14.6		13.2		32.3	23.2	15,739	56.9	62.9	3.8		3.1	47.8	3.04
26.7		2.0	10.2	-2.4	39.0	23.8	16,199	56.5	63.1	3.8		3.5	55.0	3.39
_	100	3.8	18.2	-2.9	46.6	24.5	16,658	55.9	63.2	3.8	60	4.1	63.1	3.79
32.2	19.3	3.8	23.2	-3.5	55.4	25.2	17,170	55.4	63.3	3.8		4.6	72.4	4.22
JZ.Z	24.1	3.8	28.0	-4.2	65.4	25.9	17,714	54.7	63.4	3.8		5.3	82.9	4.68
10.0	5.7	3.8	8.3	-1.7	26.4	27.2	19,129	68.2	74.1	3.8		2.9	45.3	2.37
15.6	10.6	3.8	13.6	-2.0	32.0	27.8	19,599	67.8	74.3	3.8		3.3	51.4	2.62
21.1	15.4	3.8	18.7	-2.4	38.4	28.5	20,088	67.4	74.5	3.8	71	3.7	58.3	2.90
26.7	20.2	3.8	23.8	-2.9	45.7	29.1	20,568	66.9	74.7	3.8		4.2	66.0	3.21
32.2	25.0	3.8	28.8	-3.4	54.1	29.8	21,079	66.3	74.8	3.8		4.8	75.0	3.56
ELT (°C)	Cond. Temp.	Flow (L/s)	LLT (°C)	Delta T (°C)	Heat Rej. (W)	Compressor Current (A)	Input Power (W)	EWT (°C)	Evap. Temp.	Flow (L/s)	LWT (°C)	Delta T (°C)	Cooling (W)	COPc
10.0	23	3.8	13.6	3.6	57.3	14.1	7,377		2	3.8	8.8	-3.2	50.2	6.80
12.8	26	3.8	16.4	3.6	56.9	14.9	7,983		2	3.8	8.9	-3.1	49.2	6.15
15.6	29	3.8	19.2	3.6	56.3	15.7	8,638		3	3.8	8.9	-3.1	47.9	5.54
18.3	32	3.8	21.9	3.6	55.9	16.6	9,332		3	3.8	9.1	-2.9	46.8	5.01
21.1	35	3.8	24.6	3.5	55.4	17.6	10,087	12.0	3	3.8	9.1	-2.9	45.5	4.51
23.9	38	3.8	27.4	3.5	55.0	18.6	10,891	12.0	3	3.8	9.2	-2.8	44.3	4.07
26.7	41	3.8	30.1	3.4	54.5	19.7	11,768		4	3.8	9.3	-2.7	43.0	3.66
29.4	43	3.8	32.8	3.4	54.2	20.9	12,705		4	3.8	9.3	-2.7	41.7	3.28
32.2	46	3.8	35.6	3.4	53.9	22.2	13,730		4	3.8	9.4	-2.6	40.3	2.93
35.0	49	3.8	38.4	3.4	53.6	23.6	14,827		5	3.8	9.6	-2.4	39.0	2.64
1 2 2 3 E (' 1 1 1 2 2 2 3	5.6 21.1 26.7 32.2 ELT °C) 10.0 2.8 5.6 8.3 21.1 23.9 26.7 29.4 82.2	5.6 10.6 11.1 15.4 16.7 20.2 12.2 25.0 ELT Cond. °C) Temp. 10.0 23 12.8 26 15.6 29 18.3 32 11.1 35 13.9 38 16.7 41 19.4 43 18.2.2 46	5.6 10.6 3.8 21.1 15.4 3.8 26.7 20.2 3.8 22.2 25.0 3.8 ELT Cond. Flow (L/s) 10.0 23 3.8 22.8 26 3.8 25.6 29 3.8 26.7 29.3 3.8 27.1 35 3.8 28.3 32 3.8 29.4 43 3.8 29.4 43 3.8 29.4 43 3.8 20.2 46 3.8	5.6 10.6 3.8 13.6 21.1 15.4 3.8 18.7 26.7 20.2 3.8 23.8 22.2 25.0 3.8 28.8 ELT Cond. Flow (LLT) C°C) 10.0 23 3.8 13.6 12.8 26 3.8 16.4 15.6 29 3.8 19.2 8.3 32 3.8 21.9 21.1 35 3.8 24.6 23.9 38 3.8 27.4 29.4 43 3.8 30.1 29.4 43 3.8 32.8 32.2 46 3.8 35.6	5.6 10.6 3.8 13.6 -2.0 21.1 15.4 3.8 18.7 -2.4 26.7 20.2 3.8 23.8 -2.9 22.2 25.0 3.8 28.8 -3.4 ELT Cond. Flow (L/s) LLT (°C) Delta T (°C) 10.0 23 3.8 13.6 3.6 12.8 26 3.8 16.4 3.6 15.6 29 3.8 19.2 3.6 13.3 32 3.8 21.9 3.6 21.1 35 3.8 24.6 3.5 23.9 38 3.8 27.4 3.5 26.7 41 3.8 30.1 3.4 29.4 43 3.8 32.8 3.4 32.2 46 3.8 35.6 3.4	5.6 10.6 3.8 13.6 -2.0 32.0 21.1 15.4 3.8 18.7 -2.4 38.4 26.7 20.2 3.8 23.8 -2.9 45.7 32.2 25.0 3.8 28.8 -3.4 54.1 ELT Cond. Temp. (L/s) Flow (°C) LLT (°C) W(W) 10.0 23 3.8 13.6 3.6 57.3 12.8 26 3.8 16.4 3.6 56.9 15.6 29 3.8 19.2 3.6 56.3 18.3 32 3.8 21.9 3.6 55.9 21.1 35 3.8 24.6 3.5 55.4 23.9 38 3.8 27.4 3.5 55.0 26.7 41 3.8 30.1 3.4 54.5 29.4 43 3.8 32.8 3.4 54.2 32.2 46 3.8 35.6 3.4	5.6 10.6 3.8 13.6 -2.0 32.0 27.8 21.1 15.4 3.8 18.7 -2.4 38.4 28.5 26.7 20.2 3.8 23.8 -2.9 45.7 29.1 22.2 25.0 3.8 28.8 -3.4 54.1 29.8 ELT Cond. Temp. Cond. (L/s) CC) CC) (W) Compressor Current (A) [†] 0.0 23 3.8 13.6 3.6 57.3 14.1 12.8 26 3.8 16.4 3.6 56.9 14.9 15.6 29 3.8 19.2 3.6 56.3 15.7 18.3 32 3.8 21.9 3.6 55.9 16.6 21.1 35 3.8 24.6 3.5 55.4 17.6 23.9 38 3.8 27.4 3.5 55.0 18.6 26.7 41 3.8 30.1 3.4 54.5 19.7 <td>5.6 10.6 3.8 13.6 -2.0 32.0 27.8 19,599 21.1 15.4 3.8 18.7 -2.4 38.4 28.5 20,088 26.7 20.2 3.8 23.8 -2.9 45.7 29.1 20,568 22.2 25.0 3.8 28.8 -3.4 54.1 29.8 21,079 ELT Cond. Telow (L/s) LLT (°C) Delta T (°C) Heat Rej. (W) Compressor Current (A) Power (W) Input Power (W) 10.0 23 3.8 13.6 3.6 57.3 14.1 7,377 12.8 26 3.8 16.4 3.6 56.9 14.9 7,983 15.6 29 3.8 19.2 3.6 56.3 15.7 8,638 18.3 32 3.8 21.9 3.6 55.9 16.6 9,332 21.1 35 3.8 24.6 3.5 55.4 17.6 10,087 23.9 38</td> <td>5.6 10.6 3.8 13.6 -2.0 32.0 27.8 19,599 67.8 21.1 15.4 3.8 18.7 -2.4 38.4 28.5 20,088 67.4 26.7 20.2 3.8 23.8 -2.9 45.7 29.1 20,568 66.9 32.2 25.0 3.8 28.8 -3.4 54.1 29.8 21,079 66.3 ELT Cond. Flow (L/s) LLT (°C) Delta T (°C) (W) Compressor Current (A) Power (W) EWT (°C) 10.0 23 3.8 13.6 3.6 57.3 14.1 7,377 12.8 26 3.8 16.4 3.6 56.9 14.9 7,983 15.6 29 3.8 19.2 3.6 56.3 15.7 8,638 18.3 32 3.8 24.6 3.5 55.4 17.6 10,087 13.9 38 3.8 27.4 3.5 55.0 18.6 10,891</td> <td>5.6 10.6 3.8 13.6 -2.0 32.0 27.8 19,599 67.8 74.3 21.1 15.4 3.8 18.7 -2.4 38.4 28.5 20,088 67.4 74.5 26.7 20.2 3.8 23.8 -2.9 45.7 29.1 20,568 66.9 74.7 22.2 25.0 3.8 28.8 -3.4 54.1 29.8 21,079 66.3 74.8 ELT Cond. Telow (L/s) (°C) (°C) (°C) (W) Compressor Current (A) Power (W) (°C) Temp. Input Power (W) (°C) Temp. EWT Evap. Temp. EVap. Temp. 10.0 23 3.8 13.6 3.6 57.3 14.1 7,377 2 2 12.8 26 3.8 16.4 3.6 56.9 14.9 7,983 3</td> <td>5.6 10.6 3.8 13.6 -2.0 32.0 27.8 19,599 67.8 74.3 3.8 21.1 15.4 3.8 18.7 -2.4 38.4 28.5 20,088 67.4 74.5 3.8 26.7 20.2 3.8 23.8 -2.9 45.7 29.1 20,568 66.9 74.7 3.8 32.2 25.0 3.8 28.8 -3.4 54.1 29.8 21,079 66.3 74.8 3.8 3.2 25.0 3.8 28.8 -3.4 54.1 29.8 21,079 66.3 74.8 3.8 3.2 25.0 3.8 13.6 3.6 57.3 14.1 7,377 2 2 3.8 10.0 23 3.8 16.4 3.6 56.9 14.9 7,983 2 3.8 12.8 26 3.8 19.2 3.6 56.3 15.7 8,638 3 3.8 21.1</td> <td> 10.6</td> <td> 10.6</td> <td>5.6 10.6 3.8 13.6 -2.0 32.0 27.8 19,599 67.8 74.3 3.8 71 3.7 58.3 11.1 15.4 3.8 18.7 -2.4 38.4 28.5 20,088 67.4 74.5 3.8 71 3.7 58.3 4.2 66.0 4.2 66.0 4.2 66.0 4.2 66.0 4.2 66.0 4.2 66.0 4.2 66.0 4.8 75.0</td>	5.6 10.6 3.8 13.6 -2.0 32.0 27.8 19,599 21.1 15.4 3.8 18.7 -2.4 38.4 28.5 20,088 26.7 20.2 3.8 23.8 -2.9 45.7 29.1 20,568 22.2 25.0 3.8 28.8 -3.4 54.1 29.8 21,079 ELT Cond. Telow (L/s) LLT (°C) Delta T (°C) Heat Rej. (W) Compressor Current (A) Power (W) Input Power (W) 10.0 23 3.8 13.6 3.6 57.3 14.1 7,377 12.8 26 3.8 16.4 3.6 56.9 14.9 7,983 15.6 29 3.8 19.2 3.6 56.3 15.7 8,638 18.3 32 3.8 21.9 3.6 55.9 16.6 9,332 21.1 35 3.8 24.6 3.5 55.4 17.6 10,087 23.9 38	5.6 10.6 3.8 13.6 -2.0 32.0 27.8 19,599 67.8 21.1 15.4 3.8 18.7 -2.4 38.4 28.5 20,088 67.4 26.7 20.2 3.8 23.8 -2.9 45.7 29.1 20,568 66.9 32.2 25.0 3.8 28.8 -3.4 54.1 29.8 21,079 66.3 ELT Cond. Flow (L/s) LLT (°C) Delta T (°C) (W) Compressor Current (A) Power (W) EWT (°C) 10.0 23 3.8 13.6 3.6 57.3 14.1 7,377 12.8 26 3.8 16.4 3.6 56.9 14.9 7,983 15.6 29 3.8 19.2 3.6 56.3 15.7 8,638 18.3 32 3.8 24.6 3.5 55.4 17.6 10,087 13.9 38 3.8 27.4 3.5 55.0 18.6 10,891	5.6 10.6 3.8 13.6 -2.0 32.0 27.8 19,599 67.8 74.3 21.1 15.4 3.8 18.7 -2.4 38.4 28.5 20,088 67.4 74.5 26.7 20.2 3.8 23.8 -2.9 45.7 29.1 20,568 66.9 74.7 22.2 25.0 3.8 28.8 -3.4 54.1 29.8 21,079 66.3 74.8 ELT Cond. Telow (L/s) (°C) (°C) (°C) (W) Compressor Current (A) Power (W) (°C) Temp. Input Power (W) (°C) Temp. EWT Evap. Temp. EVap. Temp. 10.0 23 3.8 13.6 3.6 57.3 14.1 7,377 2 2 12.8 26 3.8 16.4 3.6 56.9 14.9 7,983 3	5.6 10.6 3.8 13.6 -2.0 32.0 27.8 19,599 67.8 74.3 3.8 21.1 15.4 3.8 18.7 -2.4 38.4 28.5 20,088 67.4 74.5 3.8 26.7 20.2 3.8 23.8 -2.9 45.7 29.1 20,568 66.9 74.7 3.8 32.2 25.0 3.8 28.8 -3.4 54.1 29.8 21,079 66.3 74.8 3.8 3.2 25.0 3.8 28.8 -3.4 54.1 29.8 21,079 66.3 74.8 3.8 3.2 25.0 3.8 13.6 3.6 57.3 14.1 7,377 2 2 3.8 10.0 23 3.8 16.4 3.6 56.9 14.9 7,983 2 3.8 12.8 26 3.8 19.2 3.6 56.3 15.7 8,638 3 3.8 21.1	10.6	10.6	5.6 10.6 3.8 13.6 -2.0 32.0 27.8 19,599 67.8 74.3 3.8 71 3.7 58.3 11.1 15.4 3.8 18.7 -2.4 38.4 28.5 20,088 67.4 74.5 3.8 71 3.7 58.3 4.2 66.0 4.2 66.0 4.2 66.0 4.2 66.0 4.2 66.0 4.2 66.0 4.2 66.0 4.8 75.0

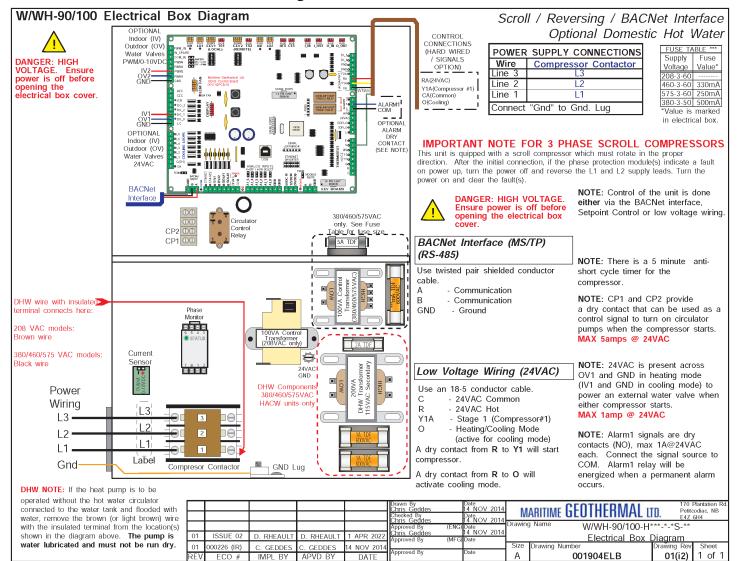
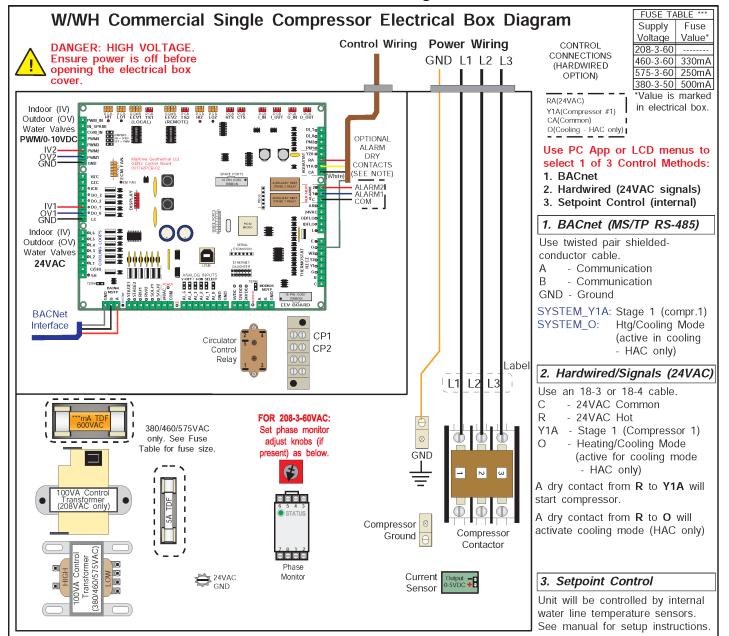
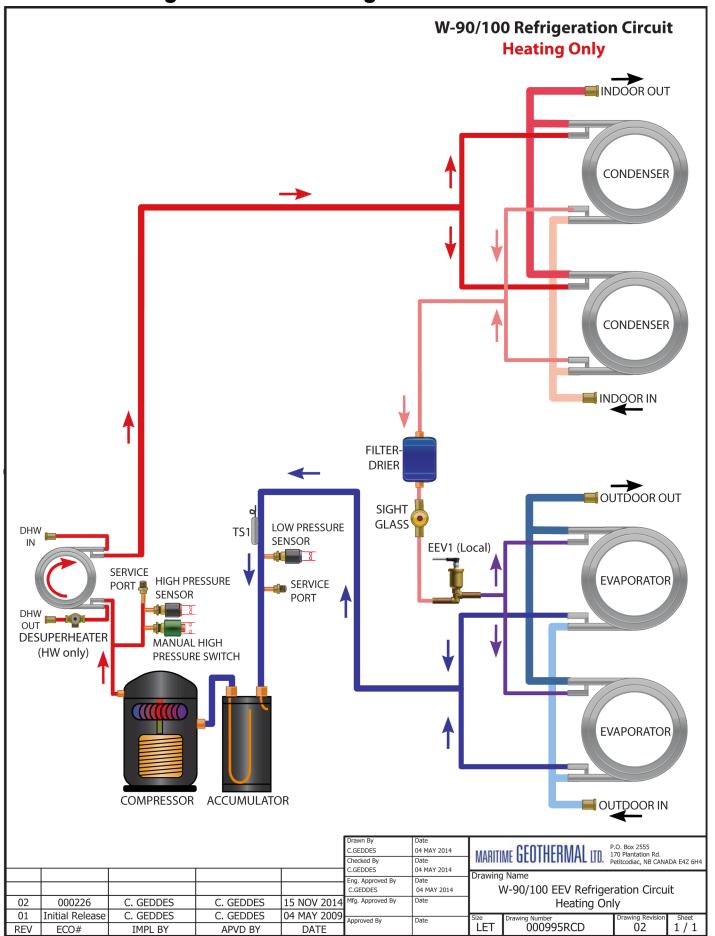
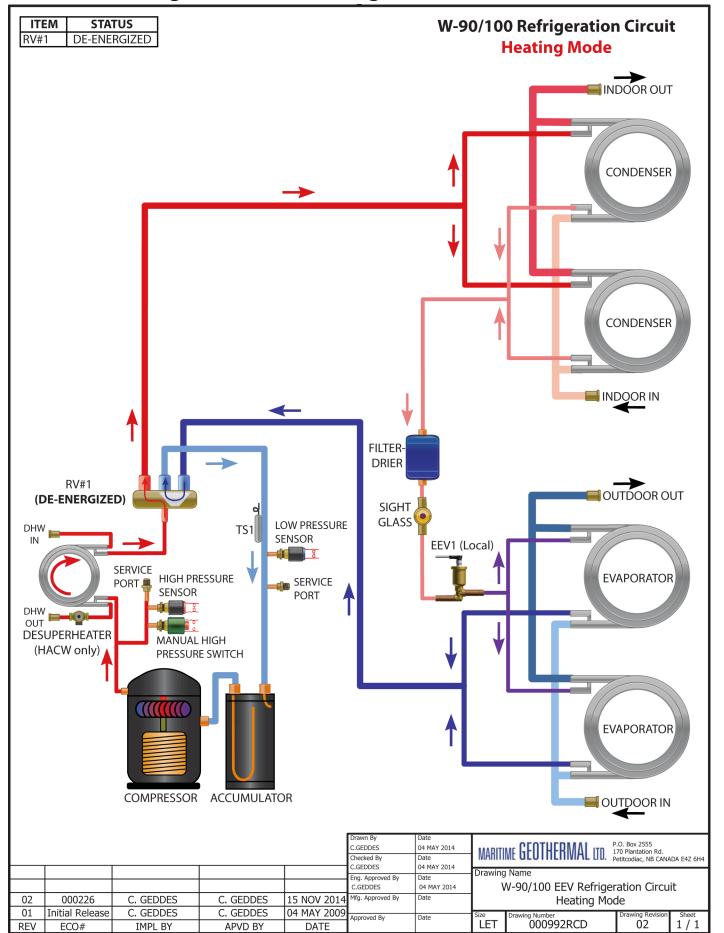

Electrical Specifications

Table 30	- W-Series (R45	54b) Electric	cal Speci	fications	;					
	Nomenclature	Pow	er Supply	У	Compr	essor	FLA	MCA	Maximum Fuse/Breaker	Minimum Wire Size
	Identifier	V-ø-Hz	MIN	MAX	RLA	LRA	Amps	Amps	Amps	ga
	2	208-3-60	187	229	28.5	255	29.4	36.5	60	#6-3
W-100	4	460-3-60	414	506	13.5	123	14.4	17.8	30	#10-3
	5	575-3-60	518	632	10.7	94	11.6	14.3	20	#12-3
	2	208-3-60	187	229	40.4	217	40.9	51.0	80	#4-3
W-120	4	460-3-60	414	506	21.2	122	21.7	27.0	40	#8-3
	5	575-3-60	518	632	15.4	97	15.9	19.8	30	#10-3
	2	208-3-60	187	229	44.2	252	44.7	55.8	100	#3-3
W-140	4	460-3-60	414	506	22.6	137	23.1	28.8	50	#8-3
	5	575-3-60	518	632	19.2	103	19.7	24.5	40	#8-3
	2	208-3-60	187	229	57.7	330	58.2	72.6	125	#2-3
W-180	4	460-3-60	414	506	26.9	180	27.4	34.1	60	#6-3
	5	575-3-60	518	632	21.5	132	22.0	27.4	50	#8-3
	4	460-3-60	414	506	32.1	211	32.6	40.6	60	#6-3
W-235	5	575-3-60	518	632	27.8	162	28.3	35.3	60	#6-3

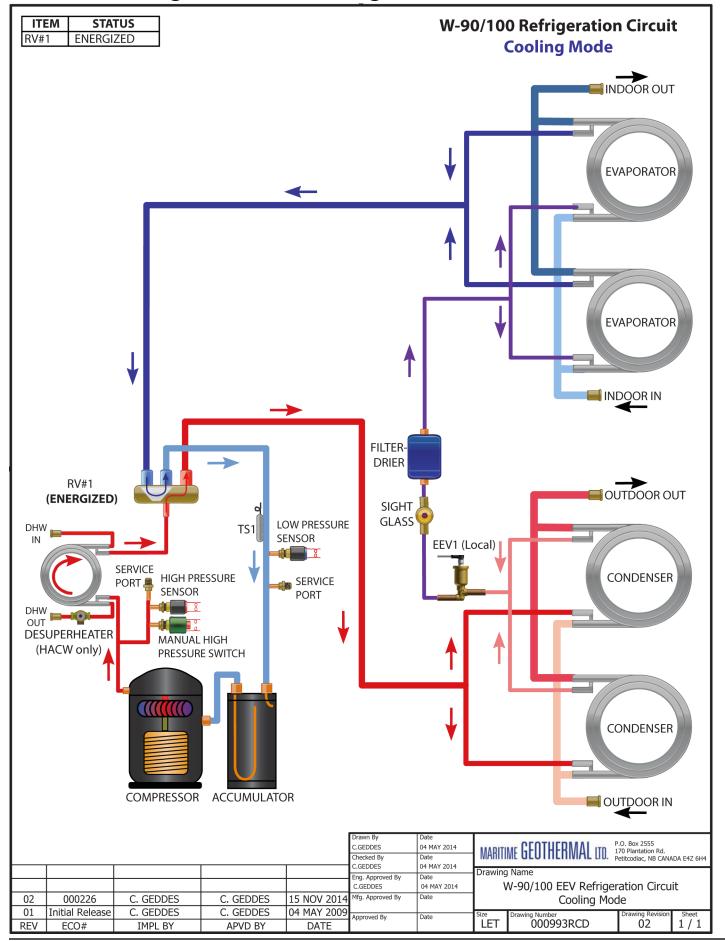

Table 31	Table 31 - WH-Series (R513a) Electrical Specifications												
	Nomenclature	Pow	ver Suppl	у	Compr	essor	FLA	MCA	Maximum Fuse/Breaker	Minimum Wire Size			
	Identifier	V-ø-Hz	MIN	MAX	RLA	LRA	Amps	Amps	Amps	ga			
	2	208-3-60	187	229	29.5	195	30.4	37.8	60	#6-3			
WH-100	4	460-3-60	414	506	13.1	95	14.0	17.3	30	#10-3			
	5	575-3-60	518	632	12.5	80	13.4	16.5	30	#10-3			
	2	208-3-60	187	229	37.2	239	37.7	47.0	80	#4-3			
WH-120	4	460-3-60	414	506	20.1	125	20.6	25.6	40	#8-3			
	5	575-3-60	518	632	12.8	80	13.3	16.5	30	#10-3			
	2	208-3-60	187	229	57.1	300	57.6	71.9	125	#2-3			
WH-140	4	460-3-60	414	506	23.7	150	24.2	30.1	50	#8-3			
	5	575-3-60	518	632	20.5	109	21.0	26.1	40	#8-3			
	2	208-3-60	187	229	64.2	340	64.7	80.8	125	#2-3			
WH-180	4	460-3-60	414	506	28.6	179	29.1	36.3	60	#6-3			
	5	575-3-60	518	632	25.8	132	26.3	32.8	50	#8-3			
WILL 225	4	460-3-60	414	506	34.9	225	35.4	44.1	60	#6-3			
WH-235	5	575-3-60	518	632	28.7	180	29.2	36.4	60	#6-3			

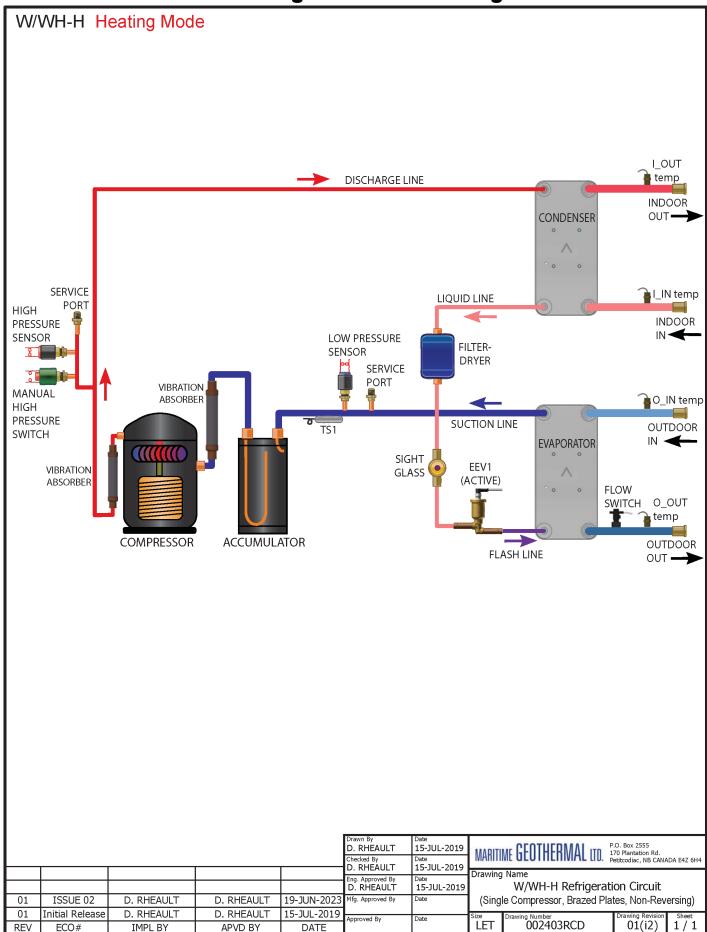
W/WH-100 Electrical Box Layout

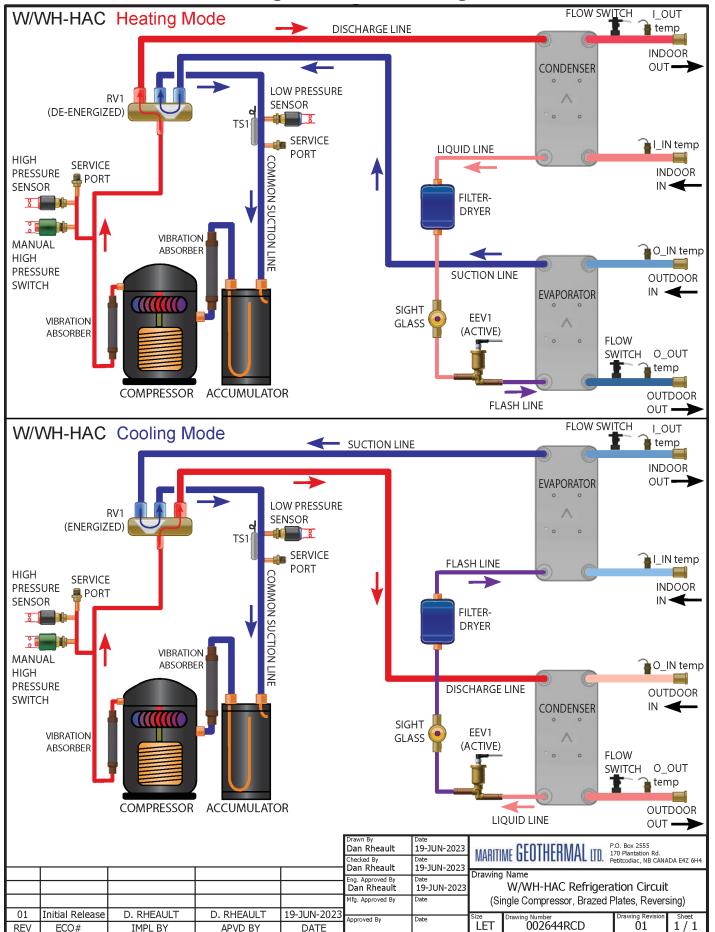

W/WH-120/140/180/235 Electrical Box Layout


IMPORTANT NOTES:

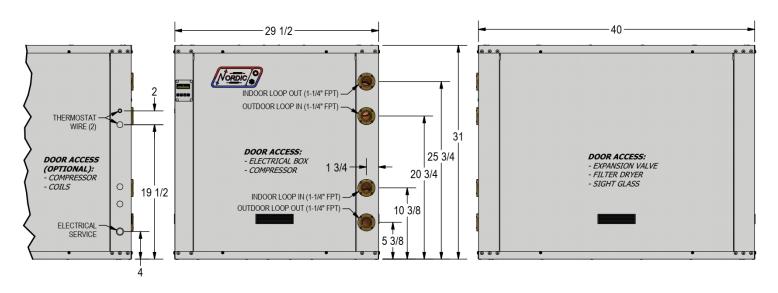
- 3 PHASE SCROLL COMPRESSORS must rotate in the proper direction. After the initial connection, if the phase protection module(s) indicate a fault on power up, turn the power off and reverse the L1 and L2 supply leads. Turn the power on and clear the fault(s).
- IMPORTANT: Ensure sufficient antifreeze concentration is used and correctly set in control board via the PC App, so that the correct low pressure cutout value is implemented to prevent freezing conditions. Failure to do so could cause the heat exchanger to freeze and rupture, voiding the warranty.
- Anti-short cycle timer of 6 minutes.
- Alarm1 signal is dry contacts (NO). Connect the signal source to COM. MAX 1amp @ 24VAC
- CP1 and CP2 are a dry contact that can be used to turn on circulator pumps when either compressor starts. In Setpoint Control mode, it is indoor circulators only (sampling). MAX 5amps @ 24VAC
- Water Valve: 24VAC is present across OV1/IV1 and GND to power an external ON/OFF water valve when either compressor starts. Modulating water valves can be connected between OV2/IV2 and GND. MAX 1amp @ 24VAC


<u> </u>					Chris Geddes	28-JUN-2019	M	ARITIME GEOTHERMAL I	Petito	Plantation Rd. codiac, NB
-					Approved By (FNG)	Date 28-JUN-2019 Date		g Name W~WH-Commercial Si	nale Comi	
01	ISSUE 02	D. RHEAULT	D. RHEAULT	15-Mar-2022	Chris Geddes Approved By (MFG)	28-JUN-2019		Electrical Box	٠ .	
01	Initial Release	C. GEDDES	C. GEDDES	28-JUN-2019	, ,		Size	Drawing Number	Drawing Rev	
REV	ECO#	IMPL BY	APVD BY	DATE	Approved By	Date	Α	002400ELB	01(i2)	1 of 1

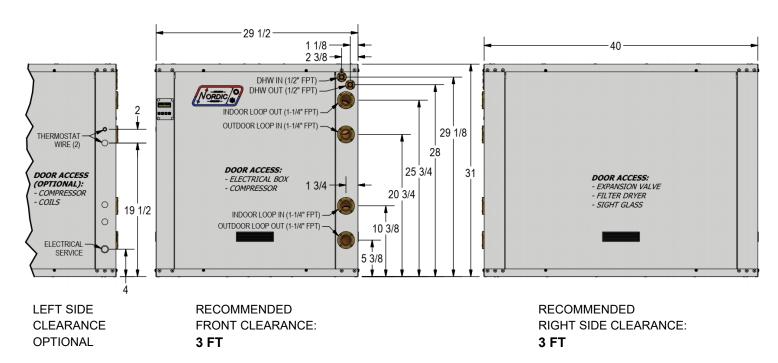

W/WH-100 Refrigeration Circuit Diagram: HAC/HACW Models


W/WH-100 Refrigeration Circuit Diagram: HAC/HACW Models

W/WH-120/140/180/235 Refrigeration Circuit Diagram: H/HW Models

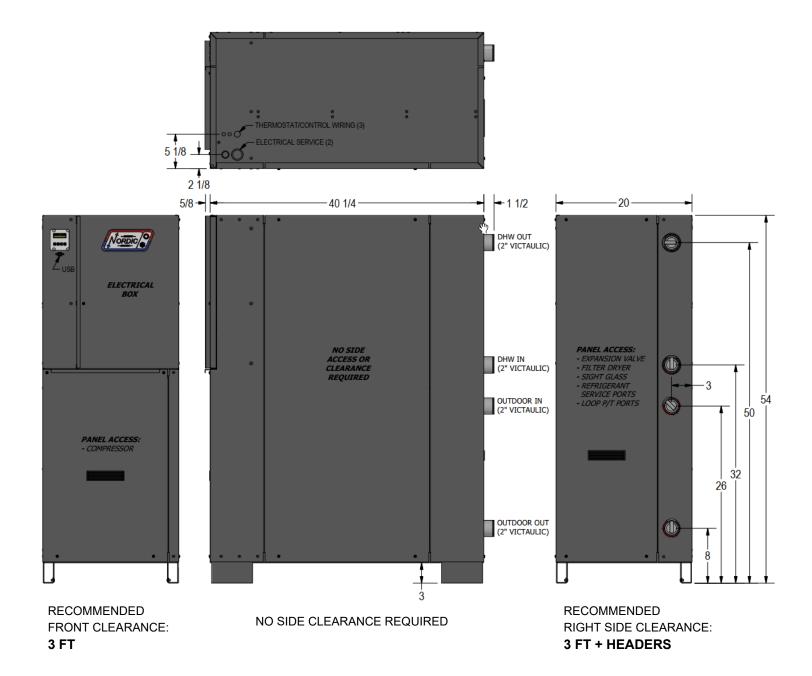


W/WH-120/140/180/235 Refrigeration Circuit Diagram: HAC/HACW Models



W/WH-100 Dimensions: H/HAC Models

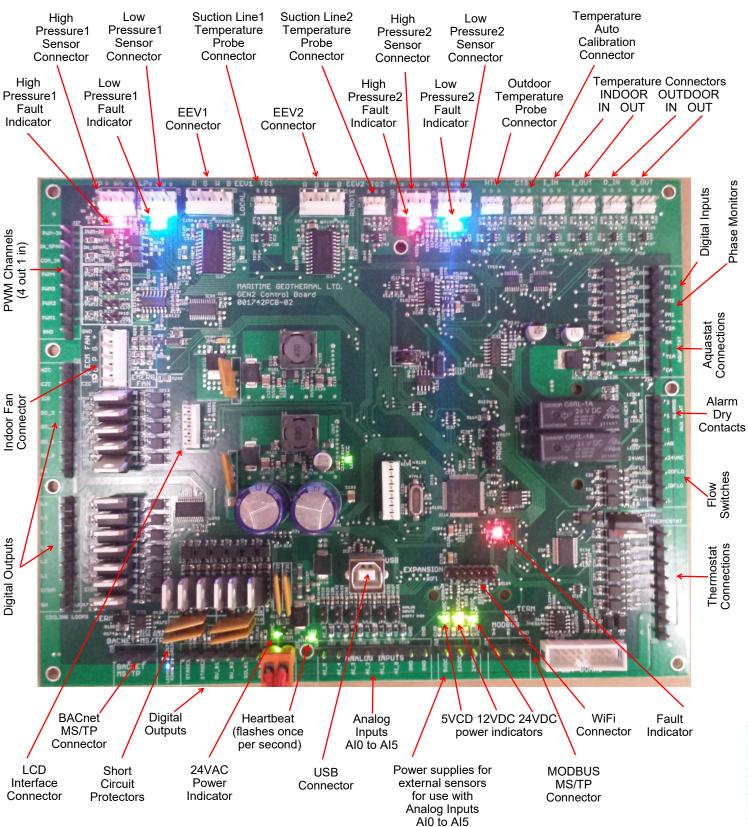
All dimensions in inches.


W/WH-100 Dimensions: HW/HACW Models (with desuperheater)

NO BACK SIDE CLEARANCE REQUIRED

W/WH-120/140/180/235 Dimensions

All dimensions in inches.



Double wall condenser option ("-PD") for direct DHW heating shown.

For single wall space heating models ("-PP"), DHW IN/OUT connections shown above become indoor closed loop connections.

Appendix A - GEN2 Control Board Description

The picture below shows the locations of the connectors and LED indicators of the control board. The control board offers many features such as short circuit protection on all digital outputs, Real Time Clock with super capacitor for backup power, WiFi capability, relay outputs for plenum heater control (if equipped), USB port, PIC32 microcontroller, etc.

The tables describe the connections starting with the top of the board and working around the board counter clock-wise.

TABLE A1 -	Control Board Connector De	scriptions (Top)
Name	Description	
HPS1/HI1	High Pressure Sensor 1	Measures compressor discharge pressure
LPS1/LO1	Low Pressure Sensor 1	Measures compressor suction pressure
EEV1	Local EEV	Control of Electronic Expansion Valve
TS1	Suction Line Temperature 1	Mounted to common suction line inside unit
EEV2	Remote EEV	Not used.
TS2	Suction Line Temperature 2	Not used.
HPS2/HI2	High Pressure Sensor 2	Not used.
LPS2/LO2	Low Pressure Sensor 2	Not used.
HTS/ODTS	Outdoor Temperature	Optional RTD outdoor temperature sensor for outdoor reset feature
CTS	Auto Calibration	Resistor in connector for auto-calibration reference (32°F—0°C)
I_IN	Indoor Loop IN	Temperature sensor mounted to pipe inside unit
I_OUT	Indoor Loop OUT	Temperature sensor mounted to pipe inside unit
O_IN	Outdoor Loop IN	Temperature sensor mounted to pipe inside unit
O_OUT	Outdoor Loop OUT	Temperature sensor mounted to pipe inside unit

TABLE A2 -	Control Board Connector	Descriptions (Left Side)
Name	Description	
PWM_IN	Signal for PWM IN	Not used.
IN_SPARE	Spare digital input	Switch or dry contact from 12VDC to disable unit (also jumper COM_IN to GND)
COM_IN	Common for PWM IN	Jumper to GND for disable functionality
PWM4	IV2	Control of 0-10VDC modulating water valve for indoor loop
PWM3	OV2	Control of 0-10VDC modulating water valve for outdoor loop
PWM2	PWM / 0-10VDC output	Not used.
PWM1	PWM / 0-10VDC output	Not used.
GND	Ground	Jumper to COM_IN for disable functionality
HZC	Hot Zone Circulator	Not used.
CZC	Cold Zone Circulator	Not used.
ICR	Internal Circulator Relay	Signal for dry contact circulator control (CP1 and CP2)
DO_3	Digital output	Not used.
DO_2	HYD_AUX	ON when hydronic auxiliary on (Setpoint Control only).
DO_1	IV1	24VAC water valve or circulator control for indoor loop
DO_0	OV1	24VAC water valve or circulator control for outdoor loop
LC	Loop common (ground)	Ground for 24VAC water valve / circulator controls
L6	Loop6	Not used.
L5	Loop5	Compressor protection module 24VAC power (sizes W-120/WH-140 and up)
L4	Loop4	Not used.
L3	TWO_TANK_3_WAY	Energizes 3-way valve to direct flow to cold tank when using HTS/CTS with 2 tanks
L2	Loop2	Not used.
L1	Loop1	Not used.
C(SH)	Soaker Hose common	Not used.
SH	Soaker Hose	Not used.

Name	Description	
	·	
GND	BACnet MS/TP	Ground for shield if required (see BACnet Interface section)
В	BACnet MS/TP	RS-485
A	BACnet MS/TP	RS-485
STAGE1	Compressor Stage 1	Starts / stops compressor
STAGE2	Compressor Stage 2	Not used.
RV#1	Reversing Valve#1	Off in heating mode, on in cooling mode (reversing -HAC models only)
RV#2	Reversing Valve#2	Not used.
SOL#1	Solenoid#1	Not used.
SOL#2	Solenoid#2	Optional refrigerant vent fan relay/contactor
24VAC	Power supply for board	24VAC power for control board
СОМ	Power supply for board	GND for control board
Al_5	Analog In Channel 5	Optional type 3/7 10k hot tank temperature sensor for HTS/CTS Setpoint Control
Al_4	Analog In Channel 4	Optional type 3/7 10k cold tank temperature sensor for HTS/CTS Setpoint Control
AI_3	Analog In Channel 3	Compressor discharge line temperature sensor
Al_2	Analog In Channel 2	Not used.
Al_1	Analog In Channel 1	Not used.
AI_0	Analog In Channel 0	Compressor current sensor
GND	Ground pin	Ground for analog sensors
GND	Ground pin	Ground for analog sensors
5VDC	Power for analog sensors	5VDC regulated power supply for sensors.
12VDC	Power for analog sensors	12VDC regulated power supply for sensors.
24VDC	Power for analog sensors	24VDC unregulated power supply for sensors.
A	MODBUS	
В	MODBUS	RS485 communication for refrigerant leak detector.
GND	MODBUS	Ground for shield if required

gital Input 1 gital Input 0 nase Monitor 2	Not used. Compressor protection module alarm input (sizes W-120 and up)
• •	Compressor protection module alarm input (sizes W-120 and up)
pase Monitor 2	
IUSC MONITON Z	Not used.
nase Monitor 1	Phase monitor alarm input
quastat stage 2	Not used.
quastat power (24VAC)	Optional 24VAC for aquastat used with Signals/Hardwired control.
quastat stage1	Optional water heat stage 1 24VAC input for use with Signals/Hardwired control.
quastat power (ground)	Optional 24VAC ground for aquastat used with Signals/Hardwired control.
age 2 alarm	Not used.
age 1 alarm	Dry contact to indicate alarm, used with C
arm Common	Used with 1 above
rflow Reductions	Not used.
ower	24VAC to flow switches
utdoor Flow Switch	Return signal from outdoor loop flow switch
door Flow Switch	Return signal from indoor loop flow switch
nermostat Lockout Indicator	24VAC output for trouble LED
nermostat Emergency Heat	Not used.
nermostat Heat/Cool	24VAC input from external dry contact to activate cooling mode (-HAC models only)
nermostat Auxiliary Heat	Not used.
nermostat Stage2	Not used.
nermostat Stage1	Not used.
nermostat Fan	Not used.
nermostat Power (24VAC)	Not used.
nermostat Power (Ground)	Not used.
	juastat power (24VAC) juastat stage1 juastat power (ground) age 2 alarm age 1 alarm arm Common rflow Reductions ower jutdoor Flow Switch door Flow Switch armostat Lockout Indicator armostat Emergency Heat armostat Heat/Cool armostat Auxiliary Heat armostat Stage2 armostat Stage1 armostat Power (24VAC)

TABLE A4 - Control Board Connector Descriptions (Right Side)

Appendix B - USB Driver Installation (Windows 10 & earlier)

NOTE: This step is not necessary for Windows 11.

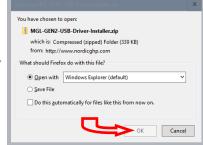
The first step in connecting a **Windows 10 or earlier** laptop computer to the control board is to install the USB driver.

The easiest way to install the USB driver is from the **USB drive included with the unit**. Insert the USB stick into a Windows computer, and open a File Explorer window to view its contents:

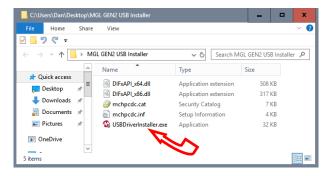
Double click on the SOFTWARE folder to show its contents:

To install the USB driver, double click on **Step 1** and follow the prompts, clicking "allow" or "yes" as required.

If the USB drive is not available, the same files can be **downloaded from the web page**.


1. Go to www.nordicghp.com, Download Software page:

Click on MGL GEN2 USB Driver Installer to download it:


3. Choose "Open with Windows Explorer", and hit "OK". (If the choice window doesn't pop up, find the downloaded file in your browser downloads and double click on it.)

4. In the window that is displayed, click and hold down the mouse button on the folder name, and drag to your desktop:

Double click on the folder you just dragged onto the desktop, then double click on the "USBDriverInstaller" file:

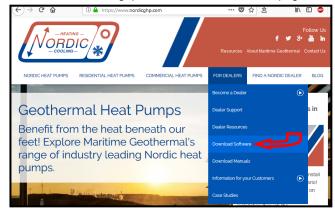
6. In the next window, click on "Install Drivers":

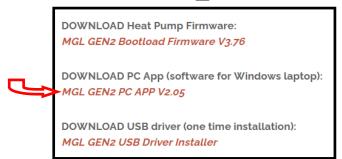
You will see a message indicating the driver was installed successfully. You are now ready to install the PC App.

Appendix C - PC App Installation (Windows 11)

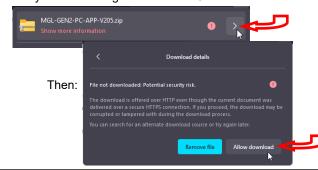
The PC App allows detailed interfacing with the control board using a Windows laptop computer. These instructions are for **Windows 11**.

The easiest way to install the PC App is from the **USB drive included with the unit**. Insert the USB stick into a Windows computer, and open a File Explorer window to view its contents:


Double click on the SOFTWARE folder to show its contents:


Double click on **Step 2** and follow the prompts, clicking "More info", "Run anyway", "Install", or similar on any warning windows which pop up, perhaps more than once. Pictures of warning windows you might encounter are shown below in step **8**.

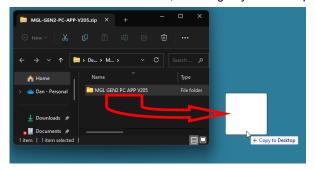
If the USB stick drive is not available, the same file can be downloaded from the web page.


1. Go to www.nordicghp.com, Download Software page:

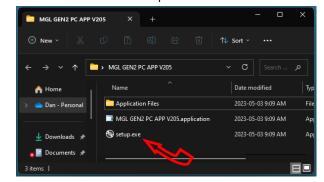
Click on MGL GEN2 PC APP V2 to download it:


3. You may see a warning like this one. Click as shown:

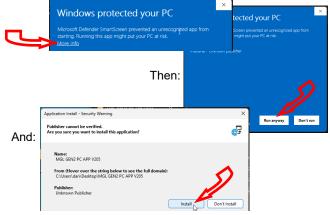
4. Click on the downloads icon on your browser, or otherwise view a list of your downloaded files:


② ② ② ② ②

5. Then click on the .zip file to open it in a File Explorer window:



Display the progress of ongoing dov


6. In the window that is displayed, click and hold down the mouse button on the folder name, and drag to your desktop:

Double click on the folder you just dragged onto the desktop, then double click on the "setup" file:

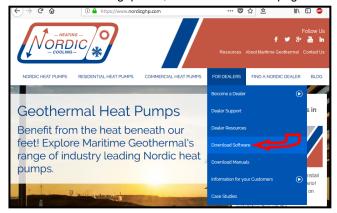
8. Click "More info", "Run anyway", "Install", or similar on any warning windows which pop up, perhaps more than once.

The PC App will open when it is finished installing. (In the future, it should be started from the start menu.) You are now ready to connect a USB cord between the laptop computer and GEN2 control board, and connect.

Appendix D - PC App Installation (Windows 10 & earlier)

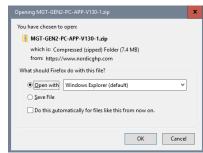
The PC App allows detailed interfacing with the control board using a Windows laptop computer. These instructions are for *Windows 10 or earlier*. First, install the USB driver as per the previous appendix.

The easiest way to install the PC App is from the **USB drive included with the unit**. Insert the USB stick into a Windows computer, and open a File Explorer window to view its contents:


Double click on the SOFTWARE folder to show its contents:

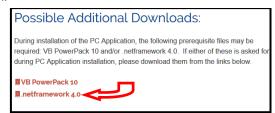
Double click on **Step 2** and follow the prompts, clicking "allow" or "yes" as required. If you get a warning that .NET framework is required, go back and double click on step **z**, then try **Step 2** again.

If the USB stick drive is not available, the same file can be downloaded from the web page.


1. Go to www.nordicghp.com, Download Software page:

2. Click on MGL GEN2 PC APP V2 to download it:

3. Choose "Open with Windows Explorer", and hit "OK":


 In the window that is displayed, click and hold down the mouse button on the folder name, and drag to your desktop:

Double click on the folder you just dragged onto the desktop, then double click on the "setup" file:

Click "Yes", "Run", "Install", or similar on any warning windows which pop up. If an error message is encountered regarding .NET framework, exit the installation and use the link on the Download Software page to install the missing item:

Then go back to step 5.

 The PC App will open when it is finished installing. You are now ready to connect a USB cord between the laptop computer and GEN2 control board, and connect.

Appendix E: Updating Firmware

METHOD 1: Updating Firmware Using PC App

This method can be used when updating newer control boards with bootloader version 2.0. This method will not work for older control boards with bootloader version 1.0 (approx. unit serial numbers -17 and lower); for those, see **METHOD 2**. Note that **METHOD 2** will work for all control boards.

The firmware comes as a .ZIP file named: *MGL GEN2 Bootload Firmware Vxxx.zip* where xxx is the version reference, e.g. 376 (version 3.76). This file can be downloaded from **www.nordicghp.com**, menu *For Dealers --> Download Software*.

 Download the file to your PC. When prompted, "Open" the zip file. If the zip file is Saved instead of Opened, find it in the web browser's Downloads list or at the bottom of browser window and click on it to open. In the window that comes up, drag the folder containing the required files onto your desktop so that it can be found easily, e.g.:

\Desktop\MGL GEN2 Bootload Firmware V376

Also be sure the latest PC App version (e.g. v2.05) is installed, which is listed alongside the firmware on the web page. If needed, install a new version as per those instructions, and uninstall older PC App versions to avoid their accidental use (which can corrupt control board parameters).

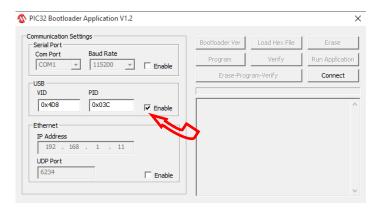
2. In that folder on the Desktop, there will be three files:

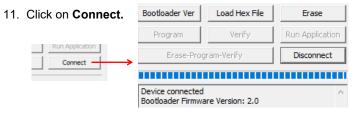
MGL_GEN2_V376.production.hex (firmware file)
PIC32UBL.exe (the programmer)
USB Bootloader Instructions.pdf (these instructions)

Note that on most computers, the file extensions (.exe, .pdf) will be hidden.


- Connect a USB (printer) cable between computer and control board.
- 4. Launch the PC App version that matches the firmware (e.g. PC App 2.05 for firmware V3.76). After it is installed, the PC App can be started using the entry found under the "M" section in the Windows START menu, which is accessed using the 4-rectangles icon normally found at the bottom left corner of the computer screen.
- In the PC App, click on the Connect button to connect to the control board.

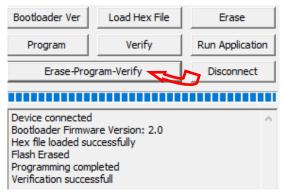
Go to menu Tools --> Update Firmware. The following message box will appear:


7. Click on YES. The following message box will appear:

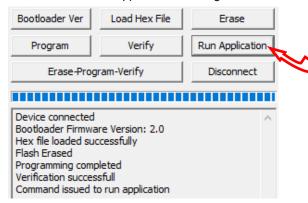


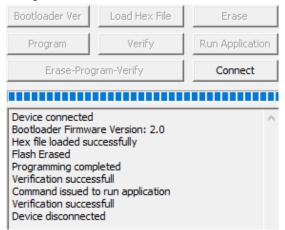
8. Click on **OK**. After a minute, the following message box will appear:

- Click on **OK**. The control board is now in bootloader mode and is ready to be programmed.
- Double click on the downloaded file PIC32UBL.exe to run it.
 In the window that opens, click on the USB **Enable** check box.



If device fails to connect and an error message is displayed, the board's bootloader may be older than v2.0. It will be necessary to instead update the firmware via jumper pins (**METHOD 2**), as per the next section.

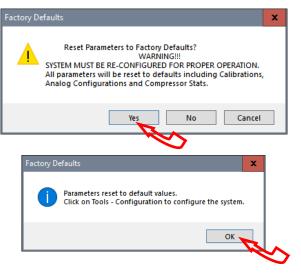

12. Click on **Load Hex File**. Select the MGL_GEN2_V376.production.hex (or higher version number) file, which is in the folder you created on the Desktop.


 Click on Erase—Program—Verify. Programming.... Wait while status bar shows progress. The messages should read as below when finished:


11. "Programming completed. Verification successful." Click on Run Application. This will take the control board out of bootloader mode and back into normal operational mode, so that the PC App can connect again.

15. Wait until the programmer disconnects itself. The messages should read as follows:

- 16. Close the PIC32 program.
- WAIT APPROXIMATELY 10 SECONDS. This gives the control board time to reset, initialize and re-connect to the PC USB port.
- Go back to the PC APP and click on the **Connect** button. Verify that the firmware version, shown in the title bar after connection, has been updated. Perform any configuration needed.


NOTE: Updating the firmware does not affect the configuration settings.

Reset to Defaults?

When updating from **firmware V3.75 or earlier**, the following steps must be taken after the update as there are significant differences in the internal parameters used to operate the system. These steps may also be performed for troubleshooting, when the control system is not acting as it should.

Note that if the firmware on a heat pumps is 2.45 or earlier, chances are that it will have an older bootloader version that requires the use of **METHOD 2** to update the firmware (see following page).

- With PC App connected, go to menu Tools --> Configuration and note all settings. They will need to be re-set later.
- Go to menu Tools --> Reset To Factory Defaults. Click YES in the pop up window, and OK in the next window.

- Go back to menu Tools --> Configuration. Re-select the Model Series even if it already indicates the proper series, as clicking on it will load the parameters for that series.
- Select the Model Size and make any other changes that apply to the particular system setup such as number of stages, control method, etc.

METHOD 2: Updating Firmware Using Jumper Pins

This method should be used when updating older control boards that have bootloader version 1.0, or where the PC App has trouble connecting to older firmware. This method will work for all control boards and can be used on all units.

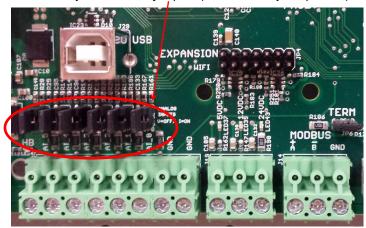
The firmware comes as a .ZIP file named:

MGL GEN2 Bootload Firmware Vxxx.zip

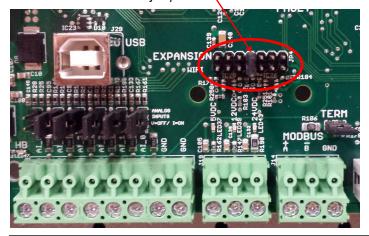
where xxx is the version reference, e.g. 376 (version 3.76). This file can be downloaded from www.nordicghp.com, menu For Dealers --> Download Software.

1. Download the file to your PC. When prompted, "Open" the zip file. If the zip file is Saved instead of Opened, find it in the web browser's Downloads list or at the bottom of browser window and click on it to open. In the window that comes up. drag the folder containing the required files onto your desktop so that it can be found easily, e.g.:

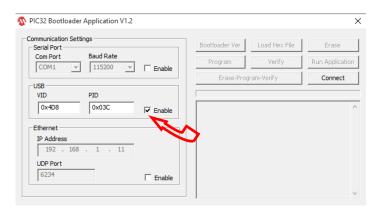
\Desktop\MGL GEN2 Bootload Firmware V376


In that folder on the Desktop, there will be three files:

MGL GEN2 V376.production.hex (firmware file) PIC32UBL.exe (the programmer) USB Bootloader Instructions.pdf (these instructions)

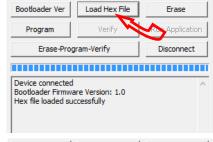

Note that on most computers, the file extensions (.exe, .pdf) will be hidden.

- 3. Connect a USB (printer) cable between computer and control
- 4. Turn power off to the heat pump.
- 5. Remove one of the black pin jumpers from just below the USB connector on the board and place in on the center pin pair of the EXPANSION header as shown below.


Borrow any one of these jumpers (however many are present)

Place jumper here

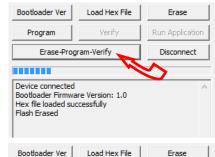
- 6. Turn the power back on. The control board is now in boot loader mode and is ready to be programmed.
- 7. Double click on the downloaded PIC32UBL.exe to run it. In the window that opens, click on the USB Enable check box.



8. Click on Connect.

Bootloader Ver

9. Click on Load Hex File. Select the MGL_GEN2_V376. production.hex (or higher version number) file, which is in the folder you created on the Desktop.


Load Hex File

Erase

Run Application

10. Click on Erase-Program-Verify

Programming...

Erase-Program-Verify

Bootloader Firmware Version: 1.0 Hex file loaded successfully

- 11. "Programming completed. Verification successful." Click on **Disconnect** and close the program.
- 12. Turn power off to the heat pump again.
- 13. Move the jumper back to where it was taken from.
- 14. Turn the power back on. Check that the LCD Display shows e.g. MGL GEN2 V3.76 on the top line during power

Device connected

Programming completed

Verification successfull

Flash Erased

Unless a statement is specifically identified as a warranty, statements made by Maritime Geothermal Ltd. ("MG") or its representatives relating to MG's products whether oral, written or contained in any sales literature, catalogue or agreement, are not express warranties and do not form a part of the basis of the bargain, but

are merely MG's opinion or commendation of MG's products.
SET FORTH HERE IS THE ONLY EXPRESS WARRANTY THAT APPLIES TO MG'S PRODUCTS. MG MAKES NO WARRANTY AGAINST LATENT DEFECTS.
MG MAKES NO WARRANTY OF MERCHANTABILITY OF THE GOODS OR OF THE FITNESS OF THE GOODS FOR ANY PARTICULAR PURPOSE.

LIMITED EXPRESS COMMERCIAL WARRANTY - PARTS

MG warrants its Commercial Class products, purchased and retained in the United States of America and Canada, to be free from defects in material and workmanship under normal use and maintenance as follows:

- Heat pumps / chillers built or sold by MG for one (1) year from the Warranty Inception Date (as defined below).
 Compressors of above units for five (5) years from the Warranty Inception Date (as defined below).
 Other accessories, when purchased separately, for (1) year from the date of shipment from MG.

The "Warranty Inception Date" shall be the date of original unit installation, as per the date on the installation Startup Record; or sixty (60) days from date of unit shipment from MG, whichever comes first.

To make a claim under this warranty, parts must be returned to MG in Petitcodiac, New Brunswick, freight prepaid, no later than ninety (90) days after the date of the failure of the part. If MG determines the part to be defective and within MG's Limited Express Commercial Warranty, MG shall, when such part has been either replaced or repaired, return such to a factory recognized distributor, dealer or service organization, freight prepaid. The warranty on any part repaired or replaced under warranty expires at the end of the original warranty period.

LIMITED EXPRESS COMMERCIAL WARRANTY - LABOUR

MARITIME GEOTHERMAL LTD. will not be responsible for any consequential damages or labour costs incurred.

This warranty does not cover and does not apply to:

- Air filters, fuses, refrigerant, fluids, oil.
 Products relocated after initial installation. (2)
- Any portion or component of any system that is not supplied by MG, regardless of the cause of the failure of such portion or component.
- (4) (5)
- Products on which the unit identification tags or labels have been removed or defaced.

 Products on which payment to MG, or to the owner's seller or installing contractor, is in default.
- Products subjected to improper or inadequate installation, including but not limited to:
 - Indoor or outdoor loop flow lower than listed in engineering specification or as expressly approved by MARITIME GEOTHERMAL LTD.
 - Operating the heat pump either manually or with automated controls so that the unit is forced to function outside its normal operating range

 - Insufficient loop antifreeze concentration for loop temperature, or antifreeze concentration incorrectly set in control board
 - Fouled heat exchangers due to poor water quality
 - Failure to use strainers or clean them regularly
 - Impact or physical damage sustained by the heat pump
 - Poor refrigeration maintenance practices, including brazing without nitrogen flow, or using wrong braze/flux
 - Incorrect voltage or missing phase supplied to unit
 - Unit modified electrically or mechanically from factory supplied condition
 - Water quality outside of recommended limits (e.g. salinity or pH)
 - Unit not mounted with supplied anti-vibration grommets when specified for use
 - Corrosion damage due to corrosive ambient environment
 - Failure due to excessive cycling caused by improper mechanical setup or improperly programmed external controller
- Physical loads or pressures placed on unit from external equipment
- Mold, fungus or bacteria damage
- Corrosion or abrasion of the product.
- Products supplied by others.
- (10) Electricity or fuel, or any increases or unrealized savings in same, for any reason whatsoever.

- The costs of fluids, refrigerant or system components supplied by others, or associated labour to repair or replace the same, which is incurred as a result of a defective part covered by MG's Limited Commercial Warranty.
- The costs of labour, refrigerant, materials, or service incurred in diagnosis and removal of defective part, or in obtaining and replacing the new or repaired part.
- Transportation costs of the defective part from the installation site to MG, or of the return of that part if warranty coverage declined.
- The costs of normal maintenance.

MG'S LIABILITY UNDER THE TERMS OF THIS LIMITED WARRANTY SHALL APPLY ONLY TO THE MG UNITS REGISTERED WITH MG THAT BEAR THE MODEL AND SERIAL NUMBERS STATED ON THE INSTALLATION START UP RECORD, AND MG SHALL NOT, IN ANY EVENT, BE LIABLE UNDER THE TERMS OF THIS LIMITED WARRANTY UNLESS THIS INSTALLATION START UP RECORD HAS BEEN ENDORSED BY OWNER & DEALER/INSTALLER AND RECIEVED BY MG LIMITED WITHIN 90 DAYS OF START UP.

Limitation: This Limited Express Commercial Warranty is given in lieu of all other warranties. If, notwithstanding the disclaimers contained herein, it is determined that other warranties exist, any such express warranty, including without imitation any express warranties or any implied warranties of fitness for particular purpose and merchantability, shall be limited to the duration of the Limited Express Commercial Warranty.

In the event of a breach of the Limited Express Commercial Warranty, MG will only be obligated at MG's option to repair the failed part or unit, or to furnish a new or rebuilt part or unit in exchange for the part or unit which has failed. If after written notice to MG's factory in Petitcodiac, New Brunswick of each defect, malfunction or other failure, and a reasonable number of attempts by MG to correct the defect, malfunction or other failure, and the remedy fails of its essential purpose, MG shall refund the purchase price paid to MG in exchange for the return of the sold good(s). Said refund shall be the maximum liability of MG. THIS REMEDY IS THE SOLE AND EXCLUSIVE REMEDY OF THE BUYER OR PURCHASER AGAINST MG FOR BREACH OF CONTRACT, FOR THE BREACH OF ANY WARRANTY OR FOR MG'S NEGLIGENCE OR IN STRICT LIABILITY.

MG shall have no liability for any damages if MG's performance is delayed for any reason or is prevented to any extent by any event such as, but not limited to: any war, civil unrest, government restrictions or restraints, strikes, or work stoppages, fire, flood, accident, shortages of transportation, fuel, material, or labour, acts of God or any other reason beyond the sole control of MG. MG EXPRESSLY DISCLAIMS AND EXCLUDES ANY LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGE IN CONTRACT, FOR BREACH OF ANY EXPRESS OR IMPLIED WARRANTY, OR IN TORT, WHETHER FOR MG'S NEGLIGENCE OR AS STRICT

OBTAINING WARRANTY PERFORMANCE

Normally, the dealer or service organization who installed the products will provide warranty performance for the owner. Should the installer be unavailable, contact any MG recognized distributor, dealer or service organization. If assistance is required in obtaining warranty performance, write or call Maritime Geothermal Ltd.

NOTE: Some states or Canadian provinces do not allow limitations on how long an implied warranty lasts, or the limitation or exclusions of consequential or incidental damages, so the foregoing exclusions and limitations may not apply to you. This warranty gives you specific legal rights, and you may also have other rights which vary from state to state and from Canadian province to Canadian province.